Unlabelled: polysaccharides (FVP) exhibit many biological activities, but the effects on gut microflora and metabolism were still unclear. Here, we explored the composition of FVP, their influence on human gut microflora composition and metabolites. FVP were used to vitro fermentation through human fecal inoculums. In addition, 16S rRNA sequencing were used to assess the effects of FVP on the gut microbiota. The metabolic profiles were investigated using untargeted metabolomics approaches in the LC-MS platform. The results showed that FVP was mainly consisted of glucose, mannose, xylose, fucose and galactose. FVP is shown to increase the relative abundances of , as well as and remarkably decrease the numbers of genera coupled with . The differential metabolites were identified and mainly involved the metabolism of glycerophospholipid, linoleic acid and synthesis of unsaturated fatty acids. FVP may exhibit biological activity function by regulating gut microflora composition and metabolites.

Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01192-y.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905359PMC
http://dx.doi.org/10.1007/s10068-022-01192-yDOI Listing

Publication Analysis

Top Keywords

gut microflora
12
gut microbiota
8
vitro fermentation
8
fvp exhibit
8
exhibit biological
8
microflora composition
8
fvp
7
gut
5
effects polysaccharides
4
polysaccharides gut
4

Similar Publications

Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome.

View Article and Find Full Text PDF

Microbiome and Mucosal Immunity in the Intestinal Tract.

In Vivo

December 2024

Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany

The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance.

View Article and Find Full Text PDF

Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents.

Dev Neurobiol

January 2025

Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.

Owing to the high prevalence of gastrointestinal dysfunction in patients, the gut-brain axis is considered to play a vital role in neurodevelopment diseases. Recent pieces of evidence have pointed to the usage of antibiotics at an early developmental stage to be a causative factor in autism due to its ability to induce critical changes in the gut microbiota. The purpose of the study is to determine the neuroprotective effect of capric acid (CA) on autism in antibiotic-induced gut dysbiosis in rodents.

View Article and Find Full Text PDF

Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.

Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.

View Article and Find Full Text PDF

Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome.

Phytomedicine

October 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China. Electronic address:

Background: Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!