Background: Data from several efficacy studies and a long-term effectiveness study have encouraged the governments to adopt a policy of providing double-fortified salt (DFS) in the Mid-Day Meal (MDM) programs in government schools across India. These envisaged food security events are likely to boost the manufacturing of DFS in a big way. Thus, it becomes pertinent to come up with a robust monitoring system involving community and field workers for quality checks. It is imperative to equip these field workers with simple testing kits (STKs) capable of qualitative detection of iron and iodine in DFS. As the consumer acceptance of foods is based on several factors including sensory characteristics, performance, convenience, cost, nutrition, and product image, a variety of iron compounds are in use for fortification. However, it becomes challenging to provide a kit that can overcome the chemical masking of iodine detection by iron compounds.

Objectives: We aimed at (1) the development of a field-friendly STK for quick qualitative assessment of iodine and various forms of iron present in DFS, (2) to check its validity under field conditions.

Methods: We put in place reagents combined using known chemical reactions and balanced use of oxidants to overcome the problems of encapsulation and to maximize the use, by enabling reagent combination to react with all forms of iron.

Results: The kit reagents successfully detect iodine as well as three commonly used iron fortificants in DFS. Published field trials confirmed the specificity and sensitivity of the developed kit. The simplicity and use of the kit by a field worker can be seen in the enclosed video.

Conclusion: The combination of improvised kit reagents allows early detection of iron and iodine in DFS. Iron is detected in a variety of iron-containing fortifications. The provision of diluted HO ensures the presence of oxygen-free radicals that enhances iodine release captured by concentrated KI making iodine detection an easy task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909184PMC
http://dx.doi.org/10.3389/fnut.2023.1059332DOI Listing

Publication Analysis

Top Keywords

detection iron
12
quick qualitative
8
qualitative assessment
8
iodine
8
assessment iodine
8
iron
8
double-fortified salt
8
field workers
8
iron iodine
8
iodine dfs
8

Similar Publications

Fe-loaded red radish anthocyanin (RRA) and zein composite nanoparticles (FZNPs) were firstly prepared to enhance the color and stability of RRA. The addition of Fe caused anthocyanin to form color chelates, enhancing its pH color sensitivity. The prepared FZNPs showed good stability and anthocyanin retention during long-term storage.

View Article and Find Full Text PDF

Ferrous ions (Fe), the primary form of iron in cells, play a crucial role in various biological processes. The presence and absorption of Fe in food has an important impact on human health. Proper dietary intake and iron supplementation are conducive to prevent and treat iron-related diseases.

View Article and Find Full Text PDF

Background: Ferroptosis is an iron-dependent regulatory cell death, which plays an essential role in bone loss. This study investigated whether the mechanism of risperidone (RIS)-induced bone loss is related to ferroptosis.

Methods: The schizophrenia mice were induced by administering MK-801.

View Article and Find Full Text PDF

Objective: To investigate the role of PCBP1 in the inhibition of lung adenocarcinoma proliferation by carbon irradiation.

Methods: A549 cells were irradiated with different doses of carbon ions to observe clonal survival and detect changes in cell proliferation. Whole transcriptome sequencing and the Illumina platform were used to analyze the differentially expressed genes in A549 cells after carbon ion irradiation.

View Article and Find Full Text PDF

We investigated the metabolome of the iron- and sulfur-oxidizing, extremely thermoacidophilic archaeon grown on mineral pyrite (FeS). The extraction of organic materials from these microorganisms is a major challenge because of the tight contact and interaction between cells and mineral materials. Therefore, we applied an improved protocol to break the microbial cells and separate their organic constituents from the mineral surface, to extract lipophilic compounds through liquid-liquid extraction, and performed metabolomics analyses using MALDI-TOF MS and UHPLC-UHR-Q/TOF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!