Quantile regression is a powerful tool for learning the relationship between a response variable and a multivariate predictor while exploring heterogeneous effects. This paper focuses on statistical inference for quantile regression in the "increasing dimension" regime. We provide a comprehensive analysis of a convolution smoothed approach that achieves adequate approximation to computation and inference for quantile regression. This method, which we refer to as turns the non-differentiable check function into a twice-differentiable, convex and locally strongly convex surrogate, which admits fast and scalable gradient-based algorithms to perform optimization, and multiplier bootstrap for statistical inference. Theoretically, we establish explicit non-asymptotic bounds on estimation and Bahadur-Kiefer linearization errors, from which we show that the asymptotic normality of the conquer estimator holds under a weaker requirement on dimensionality than needed for conventional quantile regression. The validity of multiplier bootstrap is also provided. Numerical studies confirm conquer as a practical and reliable approach to large-scale inference for quantile regression. Software implementing the methodology is available in the R package conquer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912996 | PMC |
http://dx.doi.org/10.1016/j.jeconom.2021.07.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!