To maintain energy supply to the brain, a direct energy source called adenosine triphosphate (ATP) is produced by oxidative phosphorylation and aerobic glycolysis of glucose in the mitochondria and cytoplasm. Brain glucose metabolism is reduced in many neurodegenerative diseases, including Alzheimer's disease (AD), where it appears presymptomatically in a progressive and region-specific manner. Following dysregulation of energy metabolism in AD, many cellular repair/regenerative processes are activated to conserve the energy required for cell viability. Glucose metabolism plays an important role in the pathology of AD and is closely associated with the tricarboxylic acid cycle, type 2 diabetes mellitus, and insulin resistance. The glucose intake in neurons is from endothelial cells, astrocytes, and microglia. Damage to neurocentric glucose also damages the energy transport systems in AD. Gut microbiota is necessary to modulate bidirectional communication between the gastrointestinal tract and brain. Gut microbiota may influence the process of AD by regulating the immune system and maintaining the integrity of the intestinal barrier. Furthermore, some therapeutic strategies have shown promising therapeutic effects in the treatment of AD at different stages, including the use of antidiabetic drugs, rescuing mitochondrial dysfunction, and epigenetic and dietary intervention. This review discusses the underlying mechanisms of alterations in energy metabolism in AD and provides potential therapeutic strategies in the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901551 | PMC |
http://dx.doi.org/10.2478/jtim-2022-0024 | DOI Listing |
BMC Plant Biol
December 2024
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.
View Article and Find Full Text PDFSci Rep
December 2024
Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
Physical exercise is beneficial to keep physical and mental health. The molecular mechanisms underlying exercise are still worth exploring. The healthy adult mice after six weeks of moderate-intensity exercise (experimental group) and sedentary mice (control group) were used to perform transcriptomic, proteomic, lactylation modification, and metabolomics analysis.
View Article and Find Full Text PDFSci Rep
December 2024
INRAE, Université de Tours, BOA, 37380, Nouzilly, France.
Chicken meat production in organic systems involves free-range access where animals can express foraging and locomotor behaviours. These behaviours may promote outdoor feed intake, but at the same time energy expenditure when exploring the outdoor area. More generally, the relationship of range use with metabolism, welfare including health, growth performance and meat quality needs to be better understood.
View Article and Find Full Text PDFSci Rep
December 2024
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
In this work, a novel series of quinoline-thiosemicarbazone-1,2,3-triazole-aceamide derivatives 10a-n as new potent α-glucosidase inhibitors was designed, synthesized, and evaluated. All the synthesized derivatives 10a-n were more potent than acarbose (positive control). Representatively, (E)-2-(4-(((3-((2-Carbamothioylhydrazineylidene)methyl)quinolin-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-N-phenethylacetamide (10n), as the most potent entry, with IC = 48.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!