Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation.

Adv Drug Alcohol Res

Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States.

Published: July 2022

Cannabinoids and the endocannabinoid system have been well established to play a crucial role in the regulation of the immune response. Also, emerging data from numerous investigations unravel the imperative role of gut microbiota and their metabolites in the maintenance of immune homeostasis and gut barrier integrity. In this review, we concisely report the immunosuppressive mechanisms triggered by cannabinoids, and how they are closely associated with the alterations in the gut microbiome and metabolome following exposure to endogenous or exogenous cannabinoids. We discuss how cannabinoid-mediated induction of microbial secondary bile acids, short chain fatty acids, and indole metabolites, produced in the gut, can suppress inflammation even in distal organs. While clearly, more clinical studies are necessary to establish the cross talk between exo- or endocannabinoid system with the gut microbiome and the immune system, the current evidence opens a new avenue of cannabinoid-gut-microbiota-based therapeutics to regulate immunological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910956PMC
http://dx.doi.org/10.3389/adar.2022.10550DOI Listing

Publication Analysis

Top Keywords

role gut
8
gut microbiota
8
endocannabinoid system
8
gut microbiome
8
gut
5
microbiota cannabinoid-mediated
4
cannabinoid-mediated suppression
4
suppression inflammation
4
inflammation cannabinoids
4
cannabinoids endocannabinoid
4

Similar Publications

Mouse models for metabolic health research: molecular mechanism of exercise effects on health improvement through adipose tissue remodelling.

J Physiol

January 2025

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.

View Article and Find Full Text PDF

The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.

View Article and Find Full Text PDF

Gut microbiota in cancer initiation, development and therapy.

Sci China Life Sci

December 2024

Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.

Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses.

View Article and Find Full Text PDF

Flaxseed, a rich source of omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA), lignans, and soluble fiber, has attracted attention for its potential to improve multiple cardiometabolic risk factors. While its benefits are well-recognized, comprehensive evaluations of its direct impact on clinical outcomes, such as the prevention or progression of cardiometabolic diseases, remain limited. Additionally, its potential to support healthy aging and longevity through fundamental biological mechanisms has not been fully elucidated.

View Article and Find Full Text PDF

The evolving landscape of live biotherapeutics in the treatment of Clostridioides difficile infection.

Indian J Gastroenterol

January 2025

Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.

Clostridioides difficile (C. difficile) infection (CDI) is common after antibiotic exposure and presents significant morbidity, mortality and healthcare costs worldwide. The rising incidence of recurrent CDI, driven by hypervirulent strains, widespread antibiotic use and increased community transmission, has led to an urgent need for novel therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!