Background: Dementia, mainly Alzheimer's disease (AD) and vascular dementia (VaD), remains a global health challenge. Previous studies have demonstrated the benefits of acupuncture therapy (AT) in improving dementia. Nevertheless, the therapeutic targets and integrated biological mechanisms involved remain ambiguous.
Objective: To identify therapeutic targets and biological mechanisms of AT in treating dementia by integrated analysis strategy.
Methods: By the identification of differentially expressed genes (DEGs) of AD, VaD, and molecular targets of AT active components, the acupuncture therapeutic targets associated with the biological response to AD and VaD were extracted. Therapeutic targets-based functional enrichment analysis was conducted, and multiple networks were constructed. AT-therapeutic crucial targets were captured by weighted gene co-expression network analysis (WGCNA). The interactions between crucial targets with AT active components were verified by molecular docking.
Results: Our results demonstrated that 132 and 76 acupuncture therapeutic targets were associated with AD and VaD. AT-therapeutic crucial targets including 58 for AD and 24 for VaD were captured by WGCNA, with 11 in shared, including NMU, GRP, TAC1, ADRA1D, and SST. In addition, 35 and 14 signaling pathways were significantly enriched by functional enrichment analysis, with 6 mutual pathways including neuroactive ligand-receptor interaction, GABAergic synapse, calcium signaling pathway, cAMP signaling pathway, chemokine signaling pathway, and inflammatory mediator regulation of TRP channels.
Conclusion: The improvement of AD and VaD by AT was associated with modulation of synaptic function, immunity, inflammation, and apoptosis. Our study clarified the therapeutic targets of AT on dementia, providing valuable clues for complementing and combining pharmacotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473135 | PMC |
http://dx.doi.org/10.3233/JAD-221018 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China. Electronic address:
Dichlorvos (DDVP) is an organophosphorus pesticide commonly utilized in agricultural production. Recent epidemiological studies suggest that exposure to DDVP correlates with an increased incidence of liver disease. However, data regarding the hepatotoxicity of DDVP remain limited.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.
In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Department of Medical Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.
Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan.
Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.
View Article and Find Full Text PDFPLoS One
January 2025
Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China.
Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.
Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!