A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation in discrete time coarsened multivariate longitudinal models. | LitMetric

Estimation in discrete time coarsened multivariate longitudinal models.

Stat Methods Med Res

Department of Mathematics and Department of Surgical Sciences, Uppsala University, Regional Cancer Center Midsweden, Uppsala University Hospital, Uppsala, Sweden.

Published: April 2023

We consider the analysis of longitudinal data of multiple types of events where some of the events are observed on a coarser level (e.g. grouped) at some time points during the follow-up, for example, when certain events, such as disease progression, are only observable during parts of follow-up for some subjects, causing gaps in the data, or when the time of death is observed but the cause of death is unknown. In this case, there is missing data in key characteristics of the event history such as onset, time in state, and number of events. We derive the likelihood function, score and observed information under independent and non-informative coarsening, and conduct a simulation study where we compare bias, empirical standard errors, and confidence interval coverage of estimators based on direct maximum likelihood, Monte Carlo Expectation Maximisation, ignoring the coarsening thus acting as if no event occurred, and artificial right censoring at the first time of coarsening. Longitudinal data on drug prescriptions and survival in men receiving palliative treatment for prostate cancer is used to estimate the parameters of one of the data-generating models. We demonstrate that the performance depends on several factors, including sample size and type of coarsening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119900PMC
http://dx.doi.org/10.1177/09622802231155010DOI Listing

Publication Analysis

Top Keywords

longitudinal data
8
time
5
estimation discrete
4
discrete time
4
time coarsened
4
coarsened multivariate
4
multivariate longitudinal
4
longitudinal models
4
models consider
4
consider analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!