Synergic effect of exogenous lactate and caffeine on fat oxidation and hepatic glycogen concentration in resting rats.

Phys Act Nutr

Physical Activity & Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.

Published: December 2022

Purpose: Although several physiological roles of lactate have been revealed in the last decades, its effects on energy metabolism and substrate oxidation remain unknown. Therefore, we investigated the effects of lactate on the energy metabolism of resting rats.

Methods: Male rats were divided into control (Con; distilled water), caffeine (Caf; 10 mg/kg), L-lactate (Lac; 2 g/kg), and lactate-plus-caffeine (Lac+Caf; 2 g/ kg + 10 mg) groups. Following oral administration of supplements, resting energy expenditure (study 1), biochemical blood parameters, and mRNA expression involved in energy metabolism in the soleus muscle were measured at different time points within 120 minutes of administration (study 2). Moreover, glycogen level and Pyruvate dehydrogenase (PDH) activity were measured.

Results: Groups did not differ in total energy expenditure throughout the 6 hour post-treatment evaluation. Within the first 4 hours, the Lac and Lac+Caf groups showed higher fat oxidation rates than the Con group (p<0.05). Lactate treatment decreased blood free fatty acid levels (p<0.05) and increased the mRNA expression of fatty acid translocase (FAT/CD36) (p<0.05) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) (p<0.05) in the skeletal muscle. Hepatic glycogen level in the Lac+Caf group was significantly increased (p<0.05). Moreover, after 30 and 120 minutes, PDH activity was significantly higher in lactate-supplemented groups compared to Con group (p<0.05).

Conclusion: Our findings showed that Lac+Caf enhanced fat metabolism in the whole body and skeletal muscle while increasing hepatic glycogen concentration and PDH activity. This indicates Lac+Caf can be used as a potential post-workout supplement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925112PMC
http://dx.doi.org/10.20463/pan.2022.0019DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
fat oxidation
8
lac+caf groups
8
energy expenditure
8
energy
5
synergic exogenous
4
exogenous lactate
4
lactate caffeine
4
caffeine fat
4
oxidation hepatic
4

Similar Publications

Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.

Appl Microbiol Biotechnol

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.

View Article and Find Full Text PDF

Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.

View Article and Find Full Text PDF

We report the reversible redox-controlled DNA condensation using a simple dicationic diphenylalanine derivative which contains a disulfide unit as linker. Despite the conventional belief that DNA condensing agents require a charge of +3 or higher, this dicationic molecule functions below its critical aggregation concentration, representing a non-canonical DNA condensing agent. The interaction with DNA of the studied compound combines electrostatic effects with hydrophobic/stacking interactions provided with the diphenylalanine moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!