Recently, increasing attention is given on the resource and energy recovery (e.g. short-chain fatty acids (SCFAs) and phosphorus (P)) from waste active sludge (WAS) under the "Dual carbon goals". This study compared four thiosulfate-assisted Fe/persulfate (TAFP) pretreatments of WAS, i.e. in-situ TAFP pretreatment (R1), ex-situ TAFP pretreatment (R2), in-situ TAFP pretreatment + pH adjustment (R3) and ex-situ TAFP pretreatment + pH adjustment (R4), followed by anaerobic fermentation over 20 days for SCFA production and P recovery. The results showed that the maximal SCFA yields in R1-4 were 730.2 ± 7.0, 1017.4 ± 13.9, 860.1 ± 40.8, and 1072.0 ± 33.2 mg COD/L, respectively, significantly higher than Control (365.2 ± 17.8 mg COD/L). The findings indicated that TAFP pretreatments (particularly ex-situ TAFP pretreatment) enhanced WAS disintegration and provided more soluble organics and subsequently promoted SCFA production. The P fractionation results showed the non-apatite inorganic P increased from 11.6 ± 0.2 mg P/g TSS in Control to 11.8 ± 0.5 (R1), 12.4 ± 0.3 (R2), 13.2 ± 0.7 (R3) and 12.7 ± 0.7 mg P/g TSS (R4), suggesting TAFP pretreatments improved P bioavailability due to formation of Fe-P mineral (Fe(HPO)·2HO), which could be recycled through magnetic separators. These findings were further strengthened by the analysis of microbial community and related marker genes that fermentative bacteria containing SCFA biosynthesis genes (e.g. pyk, pdhA, accA and accB) and iron-reducing bacteria containing iron-related proteins (e.g. feoA and feoB) were enriched in R1-4 (dominant in ex-situ pretreatment systems, R2 and R4). Economic evaluation further verified ex-situ TAFP pretreatment was cost-effective and a better strategy over other operations to treat WAS for SCFA production and P recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162172 | DOI Listing |
Sci Total Environ
May 2023
School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China. Electronic address:
Recently, increasing attention is given on the resource and energy recovery (e.g. short-chain fatty acids (SCFAs) and phosphorus (P)) from waste active sludge (WAS) under the "Dual carbon goals".
View Article and Find Full Text PDFChemosphere
September 2022
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:
Ferrous-based acidogenic fermentation (AF) as a means to treat waste activated sludge (WAS) and produce short-chain fatty acids (SCFAs) has drawn increasing attention, but the massive amount of "iron sludge" that it produces not only significantly increases costs and difficulty of disposal but also poses risks to the environment and human health. This study explored a novel approach to not only reduce the iron dosage required by AF but also to improve its performance by introducing a thiosulfate (TS)-assisted Fe/persulfate (TAFP) pretreatment. Effects of the TAFP pretreatment on WAS disintegration and biodegradability, SCFA production, and microbial community structure with different persulfate-Fe-thiosulfate molar ratios at 4:4:0 (R1), 4:3:1 (R2), 4:2:2 (R3) and 4:1:3 (R4) were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!