Histone modifications are an epigenetic mechanism, and the dysregulation of these proteins is known to be associated with the initiation and progression of cancer. In the search for the development of new and more effective drugs, histone modifications were identified as possible therapeutic targets. Histone methyltransferase (HMT) inhibitors correspond to the third generation of epigenetic drugs capable of writing or deleting epigenetic information. This systematic review summarized the development and prospect for the use of different HMT inhibitors in cancer therapy. An electronic search was applied across CENTRAL, Clinical Trials, Embase, LILACS, LIVIVO, Open Gray, PubMed, Scopus, and Web of Science. Based on the title and abstracts, two authors independently selected eligible studies. After the complete reading of the articles, based on the eligibility criteria, 11 studies were included in the review. Different inhibitors of HMT have been explored in multiple clinical studies, and have shown considerable anti-tumor effects. However, few phase 2 studies have been completed and/or have available results. The most advanced clinical trials mainly include tazemetostat, an Enhancer of zeste homolog 2 (EZH2) inhibitor approved for follicular lymphoma (FL). The use of HMT inhibitors has presented, so far, concise results in the treatment of hematological cancers, moreover, the adverse effects presented after the use of these medicines (alone or in combination) did not show a high level of risk for the patient. These findings, in addition to ongoing clinical studies, can represent a promising future regarding the use of HMT inhibitors in treating different types of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2023.175590 | DOI Listing |
J Med Chem
January 2025
SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
Adv Exp Med Biol
November 2024
Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
Cancer Med
November 2024
Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia.
Background: The child cancer, neuroblastoma (NB), is characterised by a low incidence of mutations and strong oncogenic embryonal driver signals. Many new targeted epigenetic modifier drugs have failed in human trials as monotherapy.
Methods: We performed a high-throughput, combination chromatin-modifier drug screen against NB cells.
Environ Sci Technol
November 2024
School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
The significance of histone methylation in epigenetic inheritance underscores its relevance to disease and the chronic effects of environmental chemicals. However, limited evidence of the causal relationships between chemically induced epigenetic changes and organismal-level effects hinders the application of epigenetic markers in ecotoxicological assessments. This study explored the contribution of repressive histone marks to reproductive toxicity induced by chemicals in consumer products in , applying the adverse outcome pathway (AOP) framework.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA. Electronic address:
The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment is distinguished by a high degree of fibrosis and inflammation, known as desmoplasia. Desmoplasia increases the stromal deposition and extracellular matrix (ECM) stiffness observed in the tumor microenvironment, contributing to the dampened penetration of pharmacological agents. The molecular and biophysical composition of the ECM during the earliest cellular changes in the development of PDAC, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!