Green valorization of end-of-life toner powder to iron oxide-nanographene nanohybrid as a recyclable persulfate activator for degrading emerging micropollutants.

Environ Res

Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt; Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

Published: April 2023

The sustainable management of toner waste (T-raw) was performed via carbonization at 500 °C (T-500) and 600 °C (T-600) to produce iron oxide-nanographene nanohybrid (FeO-NG) for activating persulfate (PS) to efficiently degrade dyes (methylene blue, MB), antibiotics (sulfamethazine, SMZ), and pesticides (diazinon, DZN). Morphology, crystallinity, chemical structure, chemical composition, surface area, and pore size distribution of the synthesized materials were investigated using various analyses. High degradation ratios of MB were attained over a wide pH range (2-7), and the optimum operating conditions were determined. The FeO-NG/PS system was tested in different water matrices. MB degradation efficiency dropped from 80.13% to 78.56% after five succeeding experiments, proving the high stability of T-500. Trapping experiments proved the major role of sulfate radicals and the minor contribution of singlet oxygen. The toxicity evaluation of the treated and untreated MB solutions was conducted via measuring the cell viability, showing an increase in cell viability ratio after the degradation of MB. The degradation efficiencies of DZN and SMZ were 97.54% and 83.7%, respectively and the mineralization ratios were 74.08% and 60.37% at initial concentrations of sulfamethazine and diazinon of 50 and 100 mg/L, respectively. The high degradation efficiency of emerging micropollutants as well as the inexpensiveness, and facile synthesis of the catalyst boost the prospect of applying the proposed system on an industrial scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115460DOI Listing

Publication Analysis

Top Keywords

iron oxide-nanographene
8
oxide-nanographene nanohybrid
8
emerging micropollutants
8
high degradation
8
degradation efficiency
8
cell viability
8
degradation
5
green valorization
4
valorization end-of-life
4
end-of-life toner
4

Similar Publications

Green valorization of end-of-life toner powder to iron oxide-nanographene nanohybrid as a recyclable persulfate activator for degrading emerging micropollutants.

Environ Res

April 2023

Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt; Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

The sustainable management of toner waste (T-raw) was performed via carbonization at 500 °C (T-500) and 600 °C (T-600) to produce iron oxide-nanographene nanohybrid (FeO-NG) for activating persulfate (PS) to efficiently degrade dyes (methylene blue, MB), antibiotics (sulfamethazine, SMZ), and pesticides (diazinon, DZN). Morphology, crystallinity, chemical structure, chemical composition, surface area, and pore size distribution of the synthesized materials were investigated using various analyses. High degradation ratios of MB were attained over a wide pH range (2-7), and the optimum operating conditions were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!