Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The class of multi-relational graph convolutional networks (MRGCNs) is a recent extension of standard graph convolutional networks (GCNs) to handle heterogenous graphs with multiple types of relationships. MRGCNs have been shown to yield results superior than traditional GCNs in various machine learning tasks. The key idea is to introduce a new kind of convolution operated on tensors that can effectively exploit correlations exhibited in multiple relationships. The main objective of this paper is to analyze the algorithmic stability and generalization guarantees of MRGCNs to confirm the usefulness of MRGCNs. Our contributions are of three folds. First, we develop a matrix representation of various tensor operations underneath MRGCNs to simplify the analysis significantly. Next, we prove the uniform stability of MRGCNs and deduce the convergence of the generalization gap to support the usefulness of MRGCNs. The analysis sheds lights on the design of MRGCNs, for instance, how the data should be scaled to achieve the uniform stability of the learning process. Finally, we provide experimental results to demonstrate the stability results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.01.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!