YAP1 is essential for self-organized differentiation of pluripotent stem cells.

Biomater Adv

Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Institute for Stem Cell Biology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany. Electronic address:

Published: March 2023

Induced pluripotent stem cells (iPSCs) form aggregates that recapitulate aspects of the self-organization in early embryogenesis. Within few days, cells undergo a transition from epithelial-like structures to organized three-dimensional embryoid bodies (EBs) with upregulation of germ layer-specific genes. However, it is largely unclear, which signaling cascades regulate self-organized differentiation. The Yes-associated protein 1 (YAP1) is a downstream effector of the Hippo pathway and essential mechanotransducer. YAP1 has been suggested to play a crucial role for early embryo development, but the relevance for early germ layer commitment of human iPSCs remains to be elucidated. To gain insights into the function of YAP1 in early cell-fate decisions, we generated YAP1 knockout (YAP) iPSC lines with CRISPR/Cas9 technology and analyzed transcriptomic and epigenetic modifications. YAP iPSCs showed increased expression of several YAP1 targets and of NODAL, an important regulator of cell differentiation. Furthermore, YAP1 deficiency evoked global DNA methylation changes. Directed differentiation of adherent iPSC colonies towards endoderm, mesoderm, and ectoderm could be induced, albeit endodermal and ectodermal differentiation showed transcriptomic and epigenetic changes in YAP lines. Notably, in undirected self-organized YAP EBs germ layer specification was clearly impaired. This phenotype was rescued via lentiviral overexpression of YAP1 and also by NODAL inhibitors. Our results demonstrate that YAP1 plays an important role during early germ layer specification of iPSCs, particularly for the undirected self-organization of EBs, and this is at least partly attributed to activation of the NODAL signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213308DOI Listing

Publication Analysis

Top Keywords

germ layer
12
yap1
9
self-organized differentiation
8
pluripotent stem
8
stem cells
8
role early
8
early germ
8
transcriptomic epigenetic
8
layer specification
8
differentiation
5

Similar Publications

Retinitis Pigmentosa type 25 (RP25) is a form of inherited retinal dystrophy characterized by a progressive loss of rod photoreceptors, subsequent degeneration of cone photoreceptors, and eventually, the retinal pigment epithelium. Caused by mutations in the EYS gene, it is believed to be critical for the structural and functional integrity of the retina. Using a non-integrative RNA reprogramming method, we have generated human induced pluripotent stem cell (hiPSC) lines from RP25 patient and from carriers but asymptomatic daughters.

View Article and Find Full Text PDF

Generation of a USP9Y knockout human embryonic stem cell line with CRISPR-Cas9 technology.

Stem Cell Res

December 2024

Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 571199, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China; Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China; National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, Haikou, Hainan 571101, China; Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China. Electronic address:

Human embryonic stem cell (hESC) lines are vital tools for studying gene function, disease modeling, and therapy. We generated a USP9Y knockout hESC line using CRISPR-Cas9 in the male-derived H1 line. Targeted deletion of the USP9Y gene was confirmed via PCR and sequencing.

View Article and Find Full Text PDF

Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Generation of an induced pluripotent stem cell (iPSC) line (INNDSUi007-A) from a patient with Kennedy disease.

Stem Cell Res

December 2024

Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, China. Electronic address:

Abnormal trinucleotide CAG repeat expansions in exon 1 of the Androgen Receptor (AR) gene has been identified as the cause of Kennedy disease (KD). We generated and characterized a human induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMC) of a patient with genetically confirmed KD. The pluripotency of these iPSCs was verified by the expression of several pluripotency markers at both RNA and protein levels, as well as their capability to differentiate into all three germ layers.

View Article and Find Full Text PDF

BAG3 contributes to the maintenance of proteostasis through chaperone-assisted selective autophagy. This function is impaired by a single amino acid exchange (P209L) in the protein, which causes myofibrillar myopathy-6 (MFM6). This disease manifests as severe skeletal muscle weakness, neuropathy and restrictive cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!