We have demonstrated the production of laser bulk nanobubbles (BNB) with ambient radii typically below 500 nm. The gaseous nature of the nanometric objects was confirmed by a focused acoustic pulse that expands the gas cavities to a size that can be visualized with optical microscopy. The BNBs were produced on demand by a collimated high-energy laser pulse in a "clean" way, meaning that no solid particles or drops were introduced in the sample by the generation method. This is a clear advantage relative to the other standard BNB production techniques. Accordingly, the role of nanometric particles in laser bubble production is discussed. The characteristics of the nanobubbles were evaluated with two alternative methods. The first one measures the response of the BNBs to acoustic pulses of increasing amplitude to estimate their rest radius through the calculation of the dynamics Blake threshold. The second one is based on the bubble dissolution dynamics and the correlation of the bubble's lifetime with its initial size. The high reproducibility of the present system in combination with automated data acquisition and analysis constitutes a sound tool for studying the effects of the liquid and gas properties on the stability of the BNBs solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945800 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2023.106321 | DOI Listing |
Ir Vet J
January 2025
Animal Health Ireland, 4-5 The Archways, Carrick On Shannon, Co. Leitrim, N41 WN27, Ireland.
Background: Biosecurity measures are crucial to the introduction and spread of pathogens both within and between farms. External biosecurity focuses on preventing pathogens from entering or leaving the farm, while internal biosecurity aims to limit or stop the spread of pathogens within the farm. Implementing biosecurity measures not only protects animals from disease but also has positive effects on productivity, welfare and farm profitability.
View Article and Find Full Text PDFCleaning and sterilization are critical Prerequisite Programs in sanitation management based on HACCP. Most food factories clean and sanitize equipment daily after production using detergents containing benzalkonium chloride (BAC). However, in factories that produce oil and fat-rich foods, it has been discovered that microbes can persist on production equipment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Arts and Sciences, Bingol University, 12000 Bingol, Turkiye. Electronic address:
Recently, "Bacillus atrophaeus", which has a cell wall structure consisting of peptidoglycan layers, has attracted the attention of researchers due to its different usage areas. In particular, research focuses on the technology of obtaining bio‑hydrogen with various techniques. This research involves, for the first time, the use of the Bacillus atrophaeus bacteria as a bio-supporting material for monodisperse copper nanoparticles (CuNPs@Bacillus atrophaeus) and the manufacture of hydrogen through catalytic NaBH-methanolysis (SB-methanolysis) in the presence of the resulting nanoparticles.
View Article and Find Full Text PDFLangmuir
January 2025
Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315211 Ningbo, P. R. China.
Solar-driven desalination technology is currently an important way to obtain freshwater resources. Significantly, porous materials are used as substrate materials of interface solar evaporator, and their specific impact of water transport property and thermal management during evaporation is worth exploring. In this paper, poly(vinyl alcohol) (PVA) sponges were prepared by a chemical foaming method, adjusted the PVA polymerization degree, and formaldehyde-hydroxyl ratio to regulate the pore size, and polypyrrole (PPy) was grown in situ on the surface skeleton of PVA sponge to construct a new interfacial solar evaporator (PPy/PVA) with different pore structures.
View Article and Find Full Text PDFChem Sci
January 2025
BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!