Crystal structure and ligandability of the 14-3-3/pyrin interface.

Biochem Biophys Res Commun

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, the Netherlands. Electronic address:

Published: April 2023

AI Article Synopsis

  • Overactivation of Pyrin leads to inflammatory diseases like Mediterranean Fever and PAAND.
  • Binding of 14-3-3 proteins reduces Pyrin's inflammation, suggesting that stabilizing this complex with small molecules could be therapeutic.
  • Crystal structures reveal that the 14-3-3/PyrinpS242 complex is more favorable for small-molecule binding compared to the 14-3-3/PyrinpS208 complex, showing promise for drug development.

Article Abstract

Overactivation of Pyrin is the cause of the inflammatory diseases Mediterranean Fever and Pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). Binding of 14-3-3 proteins reduces the pro-inflammatory activity of Pyrin, hence small molecules that stabilize the Pyrin/14-3-3 complex could convey an anti-inflammatory effect. We have solved the atomic resolution crystal structures of phosphorylated peptides derived from PyrinpS208 and PyrinpS242 - the two principle 14-3-3 binding sites in Pyrin - in complex with 14-3-3 and analyzed the ligandability of these protein-peptide interfaces by crystal-based fragment soaking. The complex between 14-3-3 and PyrinpS242 appears to be much more amenable for small-molecule binding than that of 14-3-3/PyrinpS208. Consequently, only for the 14-3-3/PyrinpS242 complex could we find an interface-binding fragment, validating protein crystallography and fragment soaking as a method to evaluate the ligandability of protein surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.02.013DOI Listing

Publication Analysis

Top Keywords

complex 14-3-3
8
fragment soaking
8
crystal structure
4
structure ligandability
4
ligandability 14-3-3/pyrin
4
14-3-3/pyrin interface
4
interface overactivation
4
overactivation pyrin
4
pyrin inflammatory
4
inflammatory diseases
4

Similar Publications

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

The adenomas in Cushing's disease frequently exhibit mutations in exon 14, within a binding motif for the regulatory protein 14-3-3 located between the catalytic domain (DUB), responsible for ubiquitin hydrolysis, and the WW-like domain that mediates autoinhibition, resulting in constantly active USP8. The exact molecular mechanism of deubiquitinase activity disruption in Cushing's disease remains unclear. To address this, Sanger sequencing of was performed to identify mutations in corticotropinomas.

View Article and Find Full Text PDF

FOXO proteins, especially FOXO1 and FOXO3, are recognized for their roles in controlling apoptosis and autophagy. Both apoptosis and autophagy have been induced in granulosa cells (GCs) by hypoxic conditions in ovarian follicles; however, the exact contribution of FOXO proteins and autophagy to the regulation of GCs apoptosis under hypoxia remains unclear. In this investigation of porcine GCs, we reveal that FOXO1 promotes apoptosis in response to hypoxia through FOXO3-dependent autophagy.

View Article and Find Full Text PDF

OsbZIP23 delays flowering by repressing OsMADS14 expression in rice.

Plant Physiol Biochem

December 2024

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Flowering time is a fundamental factor determining the global distribution and final yield of rice (Oryza sativa L.). The initiation of the floral transition process signifies the beginning of the reproductive phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!