The breaking of the out-of-plane symmetry makes a two-dimensional (2D) Janus monolayer a new platform to explore the coupling between ferroelectricity and ferromagnetism. Using density functional theory in combination with Monte Carlo simulations, we report a novel phase-switchable 2D multiferroic material VInSe with large intrinsic out-of-plane spontaneous electric polarization and a high Curie temperature (). The structural transition energy barrier between the two phases is determined to be 0.4 eV, indicating the switchability of the electric polarizations and the potential ferroelectricity. Carrier doping can boost the Curie temperature above room temperature, attributing to the enhanced magnetic exchange interaction. A transition from the ferromagnetic (FM) state to the antiferromagnetic (AFM) state can be induced by carrier doping in octahedra-VInSe, while FM coupling is well-preserved in tetrahedron-VInSe, which can be regulated to be either an XY or Ising magnet at an appropriate carrier concentration. These findings not only enrich the family of high low-dimensional monolayers but also offer a new direction for the design and multifunctional application of multiferroic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c18812DOI Listing

Publication Analysis

Top Keywords

curie temperature
12
high curie
8
carrier doping
8
ferroelectricity high
4
temperature
4
temperature janus
4
janus magnet
4
magnet breaking
4
breaking out-of-plane
4
out-of-plane symmetry
4

Similar Publications

Two-dimensional (2D) ferromagnetic (FM) semiconductors hold great promise for the next generation spintronics devices. By performing density functional theory first-principles calculations, both CeF and CeFCl monolayers are studied, our calculation results show that CeF is a FM semiconductor with sizable magneto-crystalline anisotropy energy (MAE) and high Curie temperature (290 K), but a smaller band gap and thermal instability indicate that it is not applicable at higher temperature. Its isoelectronic analogue, the CeFCl monolayer, is a bipolar FM semiconductor, its dynamics, elastic, and thermal stability are confirmed, our results demonstrate promising applications of the CeFCl monolayer for next-generation spintronic devices owing to its high Curie temperature (200 K), stable semiconducting features, and stability.

View Article and Find Full Text PDF

This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.

View Article and Find Full Text PDF

Studies presenting visible-light-induced desulfurization of peptides containing a cysteine residue have been carried out. This transformation driven by light-emitting-diode-type light proceeds with high efficiency in an aqueous solution at room temperature and involves the use of a catalytic amount of photosensitizer, Rose Bengal. The procedure has been tested on model synthetic peptides, lysozyme C and α-crystallin, and successfully applied to a one-pot native chemical ligation (NCL)-desulfurization protocol.

View Article and Find Full Text PDF

High Entropy: A General Strategy for Broadening the Operating Temperature of Magnetic Refrigeration.

J Am Chem Soc

January 2025

Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.

View Article and Find Full Text PDF

Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!