AI Article Synopsis

  • Increased wheat cultivation in southeastern Idaho is linked to higher pest populations due to planting susceptible cereal varieties and insufficient crop rotation.
  • Two experiments were conducted to test the yield of different wheat cultivars with some suspected resistance to pests, assessing their performance in both treated and untreated conditions.
  • Results showed that while aldicarb (a pesticide) improved the yields of susceptible cultivars, only the resistant cultivar 'WB-Rockland' maintained its yield under pest pressure, highlighting the need for better crop management strategies.

Article Abstract

Increased populations of in southeastern Idaho are associated with increased planting of susceptible cereal cultivars and lack of crop rotation. Identifying high-yield, resistant spring wheat cultivars with tolerance requires testing new genotypes and susceptibility assessments of marketed cultivars. We conducted two experiments to determine whether cultivars with putative resistance could maintain acceptable yield in the presence of . We also evaluated the tolerance response in relation to previously tested cultivars. Seven spring wheat cultivars were planted in two irrigated commercial fields that were naturally infested with high populations of . Measures of resistance, tolerance, and grain yield were assessed in aldicarb-treated versus nontreated plots. In aldicarb-treated plots in both years, grain yield of the susceptible cultivars Snow Crest, WestBred 936, WB9411, Patwin-515, and WB9668 was significantly increased. The expected yield increase with aldicarb was limited for the moderately susceptible Expresso due to water stress. 'WB-Rockland', carrying the resistance gene, maintained its standard yield, while none of the other cultivars in the experiment showed resistance or tolerance. Our results indicated that aldicarb improves wheat grain yield in irrigated crop production systems, and although removed from the market, it is effective and has utility for research. The results also support the hypothesis that high yield susceptible cultivars can mask the effect of on grain yield when managed appropriately.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-08-22-1820-REDOI Listing

Publication Analysis

Top Keywords

grain yield
16
resistance tolerance
12
spring wheat
12
wheat cultivars
12
cultivars
10
southeastern idaho
8
yield
8
yield susceptible
8
susceptible cultivars
8
resistance
5

Similar Publications

OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae.

Plant Cell Rep

December 2024

CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.

View Article and Find Full Text PDF

Effects of potassium fertilization on grain yield, taste quality, and starch characteristics of rice (Oryza sativa L.) grain.

J Sci Food Agric

December 2024

College of Resources and Environment | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs | Microelement Research Center, Huazhong Agricultural University, Wuhan, China.

Background: There is limited information on the effect of potassium (K) on the taste quality of rice. Field experiments with five K fertilizer application rates (0, 60, 120, 180, and 240 kg KO ha) were conducted in 2019 and 2020 using two cultivars (Xiadao No. 1 and Shenliangyou 5814) to study the effects of K fertilization on grain yield, taste quality, starch components, and protein components in grains.

View Article and Find Full Text PDF

Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade.

View Article and Find Full Text PDF

Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate.

Plant Cell Environ

December 2024

Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia.

Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels.

View Article and Find Full Text PDF

miR-9a and miR-10482-5p regulate the expression of chitin synthase and chitinase genes, enhancing lufenuron tolerance in Spodoptera frugiperda.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Spodoptera frugiperda is a significant agricultural pest, severely impacting the yield and quality of grain. Chitin is the momentous component of exoskeletons, which has a significant impact on the growth and development of insects. Our previous study found that exposure to lufenuron can reduce the expression of chitinase gene (SfCHT5) and increase the expression of chitin synthase gene (SfCHSB), two key genes for chitin synthesis in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!