Conventional and Novel Approaches to Immunosuppression in Lung Transplantation.

Clin Chest Med

Cardiothoracic Transplant Unit, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; Kings College, London, United Kingdom; Pharmacy Department, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom. Electronic address:

Published: March 2023

Most therapeutic advances in immunosuppression have occurred over the past few decades. Although modern strategies have been effective in reducing acute cellular rejection, excess immunosuppression comes at the price of toxicity, opportunistic infection, and malignancy. As our understanding of the immune system and allograft rejection becomes more nuanced, there is an opportunity to evolve immunosuppression protocols to optimize longer term outcomes while mitigating the deleterious effects of traditional protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccm.2022.10.009DOI Listing

Publication Analysis

Top Keywords

conventional novel
4
novel approaches
4
immunosuppression
4
approaches immunosuppression
4
immunosuppression lung
4
lung transplantation
4
transplantation therapeutic
4
therapeutic advances
4
advances immunosuppression
4
immunosuppression occurred
4

Similar Publications

Reservoir-operation optimisation is a crucial aspect of water-resource development and sustainable water process management. This study addresses bi-objective optimisation problems by proposing a novel crossover evolution operator, known as the hybrid simulated binary and improved arithmetic crossover (SBAX) operator, based on the simulated binary cross (SBX) and arithmetic crossover operators, and applies it to the Non-dominated Sorting Genetic Algorithms-II (NSGA-II) algorithm to improve the algorithm. In particular, the arithmetic crossover operator can obtain an optimal solution more precisely within the solution space, whereas the SBX operator can explore a broader range of potential high-quality solutions.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.

View Article and Find Full Text PDF

Solvent-Tuned Plasticity for Various Binder-Free Applications of a New Lead-Free Manganese Halide.

Adv Mater

December 2024

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.

View Article and Find Full Text PDF

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!