The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.02.009 | DOI Listing |
Acta Pharm Sin B
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.
Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India.
Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.
Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.
JMIR Form Res
January 2025
Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China, 86 2568303569.
Background: Ventricular fibrillation (VF) is a vicious arrhythmia usually generated after removal of the aortic cross-clamp (ACC) in patients undergoing open-heart surgery, which could damage cardiomyocytes, especially in patients with left ventricular hypertrophy (LVH). Amiodarone has the prominent properties of converting VF and restoring sinus rhythm. However, few studies concentrated on the effect of amiodarone before ACC release on reducing VF in patients with LVH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!