Bumble bee (genus Bombus) populations are increasingly under threat from habitat fragmentation, pesticides, pathogens, and climate change. Climate change is likely a prime driver of bumble bee declines but the mechanisms by which changing climates alter local abundance, leading to shifts in geographic range are unclear. Heat tolerance is quite high in worker bumble bees (CT ∼ 48-55 °C), making it unlikely for them to experience these high temperatures, even with climate warming. However, the thermal tolerance of whole organisms often exceeds that of their gametes; many insects can be sterilized by exposure to temperatures well below their upper thermal tolerance. Male bumble bees are independent from the colony and may encounter more frequent temperature extremes, but whether these exposures compromise spermatozoa is still unclear. Using commercially-reared Bombus impatiens colonies, males were reared in the lab and spermatozoa were exposed (in vivo and isolated in vitro) to sublethal temperatures near lower and upper thermal tolerance (CT and CT, respectively). Heat exposure (45 °C for up to 85 min) reduced spermatozoa viability both for whole males (in vivo; control = 79.5 %, heat exposed = 58 %, heat stupor = 57.7 %) and isolated seminal vesicles (in vitro; control = 85.5 %, heat exposed = 62.9 %). Whole males exposed to 4 °C for 85 min (in vivo; control = 79.2 %, cold = 72.4 %), isolated seminal vesicles exposed to 4 °C for 85 min (in vitro; control = 85.5 %, cold = 85.1 %), and whole males exposed to for 4 °C for 48 h (in vivo; control = 88.7 %, cold = 84.3 %) did not differ significantly in spermatozoa viability. After<85 min at 45 °C, males had significantly reduced spermatozoa viability, suggesting that short-term heat waves below CT could strongly reduce the fertility of male bumble bees with potential population-level impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2023.104491DOI Listing

Publication Analysis

Top Keywords

bumble bees
12
thermal tolerance
12
exposed 4 °c
12
exposures compromise
8
male bumble
8
bombus impatiens
8
bumble bee
8
climate change
8
upper thermal
8
spermatozoa viability
8

Similar Publications

AbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success.

View Article and Find Full Text PDF

Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.

Mol Ecol

December 2024

Penn State University, Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, University Park, Pennsylvania, USA.

Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens.

View Article and Find Full Text PDF

Azoxystrobin hides the respiratory failure of low dose sulfoxaflor in bumble bees.

Ecotoxicol Environ Saf

December 2024

Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.

Pollinators are exposed to multiple pesticides during their lifetime. Various pesticides are used in agriculture and thus not all mixtures have been tested against each other and little is known about them. In this article, we investigate the impact of sulfoxaflor, a novel sulfoximine insecticide, and azoxystrobin, a widely used strobilurin fungicide, on bumble bee Bombus terrestris worker survival and physiological functions.

View Article and Find Full Text PDF

A new species of cuterebrine rodent bot fly, Cuterebra yanayacui sp. nov., is described from the cloud forest of Ecuador, and it is argued that the species mimics a range of aculeate hymenopterans, including euglossine orchid bees of the genera Eufriesea Cockerell and Eulaema Lepeletier and bumble bees of the subgenus Cullumanobombus Vogt.

View Article and Find Full Text PDF

Background: The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!