Electrochemical aptasensor based on carboxylated graphene oxide modified carbon paste electrode for strontium ultrasensitive detection.

Anal Biochem

Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.

Published: April 2023

Determination of strontium ions (Sr) is crucial with regard to human health and environmental protection. In this work, an electrochemical aptasensor was designed using carboxylated graphene oxide (CGO)-modified carbon paste electrode (CGO/CPE) for ultrasensitive determination of Sr ions. The electrochemical determination was accomplished with employing the constructed G-quadruplex (G4) aptamer at the surface of aptasensor in presence of carmoisine (CA) as an electrochemical label. Moreover, NH-functionalized aptamer was immobilized onto CGO/CPE via carboxylic group. Hence, differential pulse voltammetry was applied for detection of any possible signal changes of CA on the aptasensor surface. The reduction peak currents of CA in the absence and presence of Sr in solution were different and this difference was linearly dependent to the concentration of Sr in solution. The analytical results revealed that our novel aptasensor showed two appropriate linear ranges (0.1-8.0 pM and 3.0-20.0 nM) versus to Sr ion concentrations with the limit of detection of 0.06 pM (S/N = 3). Excellent stability, selectivity and reproducibility were achieved with this new electrochemical aptasensor. Additionally, the aptasensor showed good achievements in analysis of Sr in aqueous and urine real samples, which making this proposed method a promising candidate for electrochemical detection of Sr in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2023.115081DOI Listing

Publication Analysis

Top Keywords

electrochemical aptasensor
12
carboxylated graphene
8
graphene oxide
8
carbon paste
8
paste electrode
8
real samples
8
electrochemical
6
aptasensor
6
aptasensor based
4
based carboxylated
4

Similar Publications

The conductivity of Zn-MOF-on-Co-MOF synthesized by one-pot method is improved by searching for the optimum carbonization temperature, which overcomes the limitation of traditional MOF. In order to further enhance electron transfer, the mesoporous PtPdCo trimetal was introduced, which provided considerable load capacity for methylene blue (MB) and reverse complementary DNA (sDNA), and also showed excellent catalytic activity for MB. In this study, the conductivity of aptasensor was improved by modifying carbonized MOF as the base material.

View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

() represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and antimicrobial resistance. can cause a large variety of diseases.

View Article and Find Full Text PDF

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I.

Mikrochim Acta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!