The endocrine system's interference caused by environmental estrogens (EEs) residue in food is a topic of public concern. Here, we construct an aptasensor for the sensitive detection of EEs based on luminescence resonance energy transfer (LRET). With MoS nanosheets acting as the energy acceptor and upconversion luminescence nanoparticles@gold nanoparticles (UCNPs@Au) as the luminescence donor, autofluorescence from food is prevented from interfering. The in-situ deposition of AuNPs not only induces local field enhancement to significantly increase the luminescence intensity of UCNPs, but also conduces to the modification of aptamer through Au-S bond. This aptasensor can respond to multiple estrogens thanks to the choice of a universal aptamer that recognizes phenolic hydroxyl group, and it offers the probability to screen unidentified phenolic estrogens. This method has a high sensitivity and a low limit of detection (LOD), and the satisfactory recovery rates acquired from water and milk samples confirmed its considerable application value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.135606 | DOI Listing |
Anal Methods
November 2017
Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
A new aptamer-based surface plasmon resonance (SPR) system has been designed to detect Hg that utilizes near-infrared (NIR)-to-NIR gold nanoparticle coated NaYF:Yb,Tm,Gd up-conversion nanoparticles (AuNPs@NaYF:Yb,Tm,Gd UCNPs) as probes. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were prepared and excited by near-infrared light (980 nm) which emitted at a near-infrared wavelength (808 nm) using an inexpensive infrared continuous wave laser diode. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were conjugated with Hg aptamers.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Upconverting nanoparticles (UCNPs) convert near-infrared (IR) light into higher-energy visible light, allowing them to be used in applications such as biological imaging, nano-thermometry, and photodetection. It is well known that the upconversion luminescent efficiency of UCNPs can be enhanced by using a host material with low phonon energies, but the use of low-vibrational-energy inorganic ligands and non-epitaxial shells has been relatively underexplored. Here, we investigate the functionalization of lanthanide-doped NaYF UCNPs with low-vibrational-energy SnS ligands.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
An exciting upconversion nanoprobe conditioning strategy is proposed to improve the signal-to-background ratio (SBR) through a dye-sensitized strategy, in which the dye functions both as a recognition unit of the detection target and as a sensitizer to amplify the visible luminescence of the lanthanide-doped upconversion nanoparticles (UCNPs), instead of a quencher. The application of this dye-sensitized upconversion nanoprobe to the visual detection of nerve agent mimics diethoxy phosphatidylcholine (DCP) showed excellent detection performance, with up to 110-fold enhancement of the luminescence response of the probe in DCP solution and a detection limit as low as 2 nM. Finally, we performed visual detection of DCP solution and vapor by using test strips containing the probe.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!