The development of ZFN, TALEN, and CRISPR/Cas9 systems has simplified the process of generating knockout (KO) and knock-in (KI) rats in addition to mice. However, in rats, an efficient genome editing technique that uses in vitro fertilized oocytes has not been established. Recently, we reported the stable generation of offspring from five standard strains of rats by superovulation and in vitro fertilization (IVF). Furthermore, genome-edited rats can be easily generated by electroporation. First, juvenile female rats are administered LHRH (luteinizing hormone-releasing hormone) to synchronize the estrous cycle and then AIS (Automatic Identification System) with PMSG (pregnant mare serum gonadotropin) before hCG (human chorionic gonadotropin) for superovulation. Sperm collected from a sexually mature male rat the following morning is then pre-cultured. Cumulus cell-oocyte complexes (COCs) are collected from female rats under anesthesia, and COCs are induced into a medium containing concentration-adjusted sperm. Thereafter, oocytes with two pronucleus are selected as fertilized oocytes. Next, fertilized oocytes are transferred into a glass chamber containing CRISPR ribonucleoprotein (RNP) complexes formed from gRNA and Cas9 protein. After electroporation, fertilized oocytes are then immediately transferred to culture medium. The next day, embryos are transferred into the oviduct of pseudopregnant female rats. Using the above method, offspring can be obtained 22 days after the day of embryo transfer. In this paper, we outline a method allowing simple and efficient generation of genetically modified rats without the need for technically difficult micromanipulation techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3016-7_18 | DOI Listing |
BMJ
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Centre for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
Objective: To test the hypothesis that a freeze-all strategy would increase the chance of live birth compared with fresh embryo transfer in women with low prognosis for in vitro fertilisation (IVF) treatment.
Design: Pragmatic, multicentre, randomised controlled trial.
Setting: Nine academic fertility centres in China.
Reprod Domest Anim
February 2025
Veterinary Embryology Laboratory, Professional School of Veterinary Medicine, Universidad Nacional de San Antonio Abad del Cusco, Sicuani-Cusco, Peru.
Currently, incubators with a time-lapse system are widely used for in vitro embryo production in several species, however, their effect on alpaca embryo development compared to conventional incubators remains unknown. The aim of this study was to compare early in vitro embryo development in alpacas using a time-lapse incubator system versus a conventional incubator. Ovaries were obtained from a slaughterhouse and 1048 cumulus-oocyte complexes (COCs) were collected and in vitro matured for 26 h in either a time-lapse system (n = 542) or a conventional incubator (n = 542).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China.
Background: Growth hormone (GH) could improve the outcomes of fertilization and embryo transfer (IVF-ET) in patients with decreased ovarian reserve (DOR), but which age group will benefit the most has remained controversial. This study aims to explore the outcome of IVF-ET among differently aged patients with DOR treated with GH.
Methods: A total of 846 patients with DOR undergoing IVF-ET from May 2018 to June 2023 at the Reproductive Medicine Center of Sichuan Provincial Women's and Children's Hospital were prospectively enrolled.
JDS Commun
January 2025
Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611-0910.
Pharmacological elevation of cyclic AMP (cAMP) of cultured cumulus-oocyte complexes (COC) before or coincident with initiation of maturation has been reported to improve outcomes for various systems for in vitro production of embryos. Here it was hypothesized that artificial elevation of cAMP in the oocyte for a 2-h period of prematuration would improve developmental competence of matured oocytes and result in increased blastocyst yield and altered expression of genes important for embryonic differentiation. Treated COC were cultured for 2 h with dibutyryl cAMP (dbcAMP), a membrane-permeable form of cAMP, and 3-isobutyl-1-methylxanthine (IBMX), which inhibits phosphodiesterases that convert cAMP to ATP.
View Article and Find Full Text PDFMol Reprod Dev
January 2025
Liv Hospital, Centre for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey.
In vitro maturation (IVM) is a form of assisted reproductive technology (ART) applied to obtain mature oocytes in culture. Decline in IVM success rates by age has led consideration of novel approaches based on cellular dynamics. Our aim was to achieve proteostasis in old bovine oocytes from 13 to 16-year-old bovine with a lower potential for fertilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!