AI Article Synopsis

  • Covalent modifications of chromatin, like histone modifications, affect various biological processes, including transcription, cell cycle progression, and DNA repair, highlighting the need for understanding their interactions and enzymatic functions.
  • In budding yeast, the histone acetyltransferase Gcn5 interacts with the regulatory subunit Rts1 of protein phosphatase 2A, with potential implications from the phosphorylation of histone residues H2B and centromere-specific histone H3 variant Cse4.
  • A study identified 16 kinases that interact with GCN5, particularly revealing that the Hog1 kinase plays a role in counteracting Gcn5 and Rts1 effects at the spindle assembly checkpoint, reducing sensitivity to certain drugs and affecting

Article Abstract

Covalent modifications of chromatin regulate genomic structure and accessibility in diverse biological processes such as transcriptional regulation, cell cycle progression, and DNA damage repair. Many histone modifications have been characterized, yet understanding the interactions between these and their combinatorial effects remains an active area of investigation, including dissecting functional interactions between enzymes mediating these modifications. In budding yeast, the histone acetyltransferase Gcn5 interacts with Rts1, a regulatory subunit of protein phosphatase 2A (PP2A). Implicated in the interaction is the potential for the dynamic phosphorylation of conserved residues on histone H2B and the Cse4 centromere-specific histone H3 variant. To probe these dynamics, we sought to identify kinases which contribute to the phosphorylated state. In a directed screen beginning with in silico analysis of the 127 members of yeast kinome, we have now identified 16 kinases with genetic interactions with GCN5 and specifically found distinct roles for the Hog1 stress-activated protein kinase. Deletion of HOG1 (hog1Δ) rescues gcn5Δ sensitivity to the microtubule poison nocodazole and the lethality of the gcn5Δ rts1Δ double mutant. The Hog1-Gcn5 interaction requires the conserved H2B-T91 residue, which is phosphorylated in vertebrate species. Furthermore, deletion of HOG1 decreases aneuploidy and apoptotic populations in gcn5Δ cells. Together, these results introduce Hog1 as a kinase that functionally opposes Gcn5 and Rts1 in the context of the spindle assembly checkpoint and suggest further kinases may also influence GCN5's functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085806PMC
http://dx.doi.org/10.1093/g3journal/jkad021DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
deletion hog1
8
functional tug
4
tug war
4
kinases
4
war kinases
4
kinases phosphatases
4
gcn5
4
phosphatases gcn5
4
gcn5 acetyltransferase
4

Similar Publications

The multicenter, phase III GMMG ReLApsE trial (EudraCT-No:2009-013856-61) randomized relapsed and/or refractory multiple myeloma (RRMM) patients equally to lenalidomide/dexamethasone (LEN/DEX, 25mg days 1-21/40mg weekly, 4-week cycles) re-induction, salvage high dose chemotherapy (sHDCT, melphalan 200mg/m2), autologous stem cell transplantation (ASCT) and LEN maintenance (10mg/day; transplant arm, n=139) versus continuous LEN/DEX (control arm, n=138). Ninety-four percent of patients had received frontline HDCT/ASCT. We report an updated analysis of survival endpoints with a median follow-up of 99 months.

View Article and Find Full Text PDF

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Curcumin is known for its potential health benefits; however, the evidence remains inconclusive regarding its necessity as a supplement for athletes during the preparatory phase of training. This study aimed to assess the effect of 6-week curcumin supplementation at a dose of 2g/day on selected inflammatory markers, blood count, and brain-derived neurotropic factor (BDNF) levels in middle-aged amateur long-distance runners during the preparatory period of a macrocycle. Thirty runners were randomly assigned to either a curcumin-supplemented group (CUR, n = 15) or a placebo group (PLA, n = 15).

View Article and Find Full Text PDF

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!