A multimode optical fiber supports excitation and propagation of a pure single optical mode, i.e., the field pattern that satisfies the boundary conditions and does not change along the fiber. When two counterpropagating pure optical modes are excited, they could interact through the stimulated Brillouin scattering (SBS) process. Here, we present a simple theoretical formalism describing SBS interaction between two individual optical modes selectively excited in an acoustically isotropic multimode optical fiber. Employing a weakly guiding step-index fiber approach, we have built an analytical expression for the spatial distribution of the sound field amplitude in the fiber core and explored the features of SBS gain spectra, describing the interaction between modes of different orders. In this way, we give a clear insight into the sound propagation effects accompanying SBS in multimode optical fibers, and demonstrate their specific contributions to the SBS gain spectrum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919090 | PMC |
http://dx.doi.org/10.3390/s23031715 | DOI Listing |
Inorg Chem
January 2025
Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Information storage and encryption are the key technologies for modern information transmission. However, most optical information storage technologies based on long persistent luminescent (PersL) only have one fixed response mode, which is easy to imitate, limiting their security in advanced information storage and encryption applications. Besides, the cost of rare earth-doped PersL materials restricts their wide application.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Normal University, Chemistry, 55 W Zhongshan Rd, 510006, Guangzhou, CHINA.
Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (Li2S), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).
View Article and Find Full Text PDFA novel, to the best of our knowledge, approach for the modal decomposition of a fiber laser beam is demonstrated using a spatial mode multiplexer. Since the modal decomposition is carried out optically, this approach is able to obtain the modal content at speeds up to the GHz level. In order to demonstrate such performance, we have applied this approach to the modal analysis of a -switched pulse generated in a multimode fiber with alternating intra-pulse mode content.
View Article and Find Full Text PDFFree space optical communication (FSOC) technology can be used for data transmission between ocean islands as backup wireless communication networks to cope with traffic surges and emergencies. In this paper, we experimentally demonstrate the results of a 24-h real-time single-wavelength 2.5-Gbps FSOC between two islands 29 km apart at a low altitude with low complexity.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Van der Waals (vdW) semiconductors have emerged as promising platforms for efficient nonlinear optical conversion, including harmonic and entangled photon generation. Although major efforts are devoted to integrating vdW materials in nanoscale waveguides for miniaturization, the realization of efficient, phase-matched conversion in these platforms remains challenging. Here, to address this challenge, we report a far-field ultrafast imaging method to track the propagation of both fundamental and harmonic waves within vdW waveguides with femtosecond and sub-50 nanometre spatiotemporal precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!