A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

JUTAR: Joint User-Association, Task-Partition, and Resource-Allocation Algorithm for MEC Networks. | LitMetric

JUTAR: Joint User-Association, Task-Partition, and Resource-Allocation Algorithm for MEC Networks.

Sensors (Basel)

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.

Published: February 2023

Mobile edge computing (MEC) is a promising technique to support the emerging delay-sensitive and compute-intensive applications for user equipment (UE) by means of computation offloading. However, designing a computation offloading algorithm for the MEC network to meet the restrictive requirements towards system latency and energy consumption remains challenging. In this paper, we propose a joint user-association, task-partition, and resource-allocation (JUTAR) algorithm to solve the computation offloading problem. In particular, we first build an optimization function for the computation offloading problem. Then, we utilize the user association and smooth approximation to simplify the objective function. Finally, we employ the particle swarm algorithm (PSA) to find the optimal solution. The proposed JUTAR algorithm achieves a better system performance compared with the state-of-the-art (SOA) computation offloading algorithm due to the joint optimization of the user association, task partition, and resource allocation for computation offloading. Numerical results show that, compared with the SOA algorithm, the proposed JUTAR achieves about 21% system performance gain in the MEC network with 100 pieces of UE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921857PMC
http://dx.doi.org/10.3390/s23031601DOI Listing

Publication Analysis

Top Keywords

computation offloading
24
joint user-association
8
user-association task-partition
8
task-partition resource-allocation
8
algorithm mec
8
offloading algorithm
8
mec network
8
jutar algorithm
8
offloading problem
8
user association
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!