This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288941 | PMC |
http://dx.doi.org/10.3390/s23031533 | DOI Listing |
Sci Adv
January 2025
NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures.
View Article and Find Full Text PDFInt Arch Occup Environ Health
January 2025
Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China.
Purpose: This study examines the link between high occupational noise exposure and atrial fibrillation (AF), given the limited existing evidence.
Methods: We conducted a cross-sectional study among participants from a large heavy industry enterprise in China. High noise exposure was defined as an equivalent A-weighted sound level (LAeq, 8 h) of ≥ 80 dB(A) during an 8 h workday.
J Acoust Soc Am
January 2025
Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA.
Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
National Key Laboratory of Scattering and Radiation, Beijing 100854, China.
The disordered assembly and low conductivity of carbon nanotubes are the main problems that limit the application of electromagnetic interference (EMI) shielding. In this work, an ordered lamellar assembly structure of multiwalled carbon nanotube/TiCT (MWCNT/TiCT) hybrid films was achieved by vacuum-assisted filtration through the hybridization of TiCT nanosheets and carbon nanotubes, where carbon nanotubes were tightly sticking on the surface of TiCT nanosheets via physical adsorption and hydrogen bonding. Compared with the pure carbon nanotubes films, the hybrid MWCNT/TiCT films achieved a significant improvement in conductivity of 452.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!