In this study, we develop a framework for an intelligent and self-supervised industrial pick-and-place operation for cluttered environments. Our target is to have the agent learn to perform prehensile and non-prehensile robotic manipulations to improve the efficiency and throughput of the pick-and-place task. To achieve this target, we specify the problem as a Markov decision process (MDP) and deploy a deep reinforcement learning (RL) temporal difference model-free algorithm known as the deep Q-network (DQN). We consider three actions in our MDP; one is 'grasping' from the prehensile manipulation category and the other two are 'left-slide' and 'right-slide' from the non-prehensile manipulation category. Our DQN is composed of three fully convolutional networks (FCN) based on the memory-efficient architecture of DenseNet-121 which are trained together without causing any bottleneck situations. Each FCN corresponds to each discrete action and outputs a pixel-wise map of affordances for the relevant action. Rewards are allocated after every forward pass and backpropagation is carried out for weight tuning in the corresponding FCN. In this manner, non-prehensile manipulations are learnt which can, in turn, lead to possible successful prehensile manipulations in the near future and vice versa, thus increasing the efficiency and throughput of the pick-and-place task. The Results section shows performance comparisons of our approach to a baseline deep learning approach and a ResNet architecture-based approach, along with very promising test results at varying clutter densities across a range of complex scenario test cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919624PMC
http://dx.doi.org/10.3390/s23031513DOI Listing

Publication Analysis

Top Keywords

prehensile non-prehensile
8
non-prehensile robotic
8
deep reinforcement
8
reinforcement learning
8
efficiency throughput
8
throughput pick-and-place
8
pick-and-place task
8
manipulation category
8
prehensile
4
pick-and-place
4

Similar Publications

Background: Following a spinal cord injury, regaining hand function is a top priority. Current hand assessments are conducted in clinics, which may not fully represent real-world hand function. Grasp strategies used in the home environment are an important consideration when examining the impact of rehabilitation interventions.

View Article and Find Full Text PDF

In this study, we develop a framework for an intelligent and self-supervised industrial pick-and-place operation for cluttered environments. Our target is to have the agent learn to perform prehensile and non-prehensile robotic manipulations to improve the efficiency and throughput of the pick-and-place task. To achieve this target, we specify the problem as a Markov decision process (MDP) and deploy a deep reinforcement learning (RL) temporal difference model-free algorithm known as the deep Q-network (DQN).

View Article and Find Full Text PDF

Sim-to-real latent prediction: Transferring visual non-prehensile manipulation policies.

Front Robot AI

January 2023

Active Perception and Robot Interactive Learning Laboratory, Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy.

Reinforcement Learning has been shown to have a great potential for robotics. It demonstrated the capability to solve complex manipulation and locomotion tasks, even by learning end-to-end policies that operate directly on visual input, removing the need for custom perception systems. However, for practical robotics applications, its scarce sample efficiency, the need for huge amounts of resources, data, and computation time can be an insurmountable obstacle.

View Article and Find Full Text PDF

Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.

Neuron

October 2021

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Robotics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined.

View Article and Find Full Text PDF

Nuclear energy will play a critical role in meeting clean energy targets worldwide. However, nuclear environments are dangerous for humans to operate in due to the presence of highly radioactive materials. Robots can help address this issue by allowing remote access to nuclear and other highly hazardous facilities under human supervision to perform inspection and maintenance tasks during normal operations, help with clean-up missions, and aid in decommissioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!