A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks. | LitMetric

Smart metering systems development and implementation in power distribution networks can be seen as an important factor that led to a major technological upgrade and one of the first steps in the transition to smart grids. Besides their main function of power consumption metering, as is demonstrated in this work, the extended implementation of smart metering can be used to support many other important functions in the electricity distribution grid. The present paper proposes a new solution that uses a frequency feature-based method of data time-series provided by the smart metering system to estimate the energy contour at distribution level with the aim of improving the quality of the electricity supply service, of reducing the operational costs and improving the quality of electricity measurement and billing services. The main benefit of this approach is determining future energy demand for optimal energy flow in the utility grid, with the main aims of the best long term energy production and acquisition planning, which lead to lowering energy acquisition costs, optimal capacity planning and real-time adaptation to the unpredicted internal or external electricity distribution branch grid demand changes. Additionally, a contribution to better energy production planning, which is a must for future power networks that benefit from an important renewable energy contribution, is intended. The proposed methodology is validated through a case study based on data supplied by a real power grid from a medium sized populated European region that has both economic usage of electricity-industrial or commercial-and household consumption. The analysis performed in the proposed case study reveals the possibility of accurate energy contour forecasting with an acceptable maximum error. Commonly, an error of 1% was obtained and in the case of the exceptional events considered, a maximum 15% error resulted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919875PMC
http://dx.doi.org/10.3390/s23031490DOI Listing

Publication Analysis

Top Keywords

smart metering
16
energy contour
12
energy
9
contour forecasting
8
power networks
8
electricity distribution
8
improving quality
8
quality electricity
8
energy production
8
case study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!