Nowadays, state-of-the-art direct visual odometry (VO) methods essentially rely on points to estimate the pose of the camera and reconstruct the environment. Direct Sparse Odometry (DSO) became the standard technique and many approaches have been developed from it. However, only recently, two monocular plane-based DSOs have been presented. The first one uses a learning-based plane estimator to generate coarse planes as input for optimization. When these coarse estimates are too far from the minimum, the optimization may fail. Thus, the entire system result is dependent on the quality of the plane predictions and restricted to the training data domain. The second one only detects planes in vertical and horizontal orientation as being more adequate to structured environments. To the best of our knowledge, we propose the first Stereo Plane-based VO inspired by the DSO framework. Differing from the above-mentioned methods, our approach purely uses planes as features in the sliding window optimization and uses a dual quaternion as pose parameterization. The conducted experiments showed that our method presents a similar performance to Stereo DSO, a point-based approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919619 | PMC |
http://dx.doi.org/10.3390/s23031393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!