Background And Objective: Mental workload (MWL) is a relevant construct involved in all cognitively demanding activities, and its assessment is an important goal in many research fields. This paper aims at evaluating the reproducibility and sensitivity of MWL assessment from EEG signals considering the effects of different electrode configurations and pre-processing pipelines (PPPs).
Methods: Thirteen young healthy adults were enrolled and were asked to perform 45 min of Simon's task to elicit a cognitive demand. EEG data were collected using a 32-channel system with different electrode configurations (fronto-parietal; Fz and Pz; Cz) and analyzed using different PPPs, from the simplest bandpass filtering to the combination of filtering, Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA). The reproducibility of MWL indexes estimation and the sensitivity of their changes were assessed using Intraclass Correlation Coefficient and statistical analysis.
Results: MWL assessed with different PPPs showed reliability ranging from good to very good in most of the electrode configurations (average consistency > 0.87 and average absolute agreement > 0.92). Larger fronto-parietal electrode configurations, albeit being more affected by the choice of PPPs, provide better sensitivity in the detection of MWL changes if compared to a single-electrode configuration (18 vs. 10 statistically significant differences detected, respectively).
Conclusions: The most complex PPPs have been proven to ensure good reliability (>0.90) and sensitivity in all experimental conditions. In conclusion, we propose to use at least a two-electrode configuration (Fz and Pz) and complex PPPs including at least the ICA algorithm (even better including ASR) to mitigate artifacts and obtain reliable and sensitive MWL assessment during cognitive tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920504 | PMC |
http://dx.doi.org/10.3390/s23031367 | DOI Listing |
Talanta
January 2025
Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.
The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physics, Alba Nova Research Center, Stockholm University, Stockholm SE-106 91 Sweden.
Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.
View Article and Find Full Text PDFSensors (Basel)
January 2025
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China.
Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.
Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!