In order to advance engineering applications of robotics such as wearable health-monitoring devices, humanoid robots, etc., it is essential to investigate the tactile sensations of artificial haptic sensors mimicking bioinspired human cutaneous mechanoreceptors such as free nerve endings, Merkel's cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles. The generated receptor's potential response to extraneous stimuli, categorized as slow adaption (SA) or fast adaption (FA), is particularly significant as a typical property. The present study addressed the estimation of SA and FA by utilizing morphologically fabricated mechanoreceptors made of our proposed magnetically responsive intelligent fluid, hybrid fluid (HF), and by applying our proposed electrolytic polymerization. Electric circuit models of the mechanoreceptors were generated using experimental data on capacitance and inductance on the basis of the electric characteristics of impedance. The present results regarding equivalent firing rates based on FA and SA are consistent with the FA and SA findings of vital mechanoreceptors by biomedical analysis. The present investigative process is useful to clarify the time of response to a force on the fabricated artificial mechanoreceptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920702PMC
http://dx.doi.org/10.3390/s23031327DOI Listing

Publication Analysis

Top Keywords

hybrid fluid
8
mechanoreceptors
5
estimation fast
4
fast slow
4
slow adaptions
4
adaptions tactile
4
tactile sensation
4
sensation mechanoreceptors
4
mechanoreceptors mimicked
4
mimicked hybrid
4

Similar Publications

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Higher-end science and technology facilitate the human community with a sophisticated life despite it curses by abundant pollution. The alarming demand for sustainability pressurizes the manufacturing sector to ensure sustainable manufacturing. Since Molybdenum di sulfide (MoS) and avocado oil are known solid and liquid lubricants respectively, hence, it is a worthwhile attempt to implement the bio-based degradable avocado oil enriched with nano Molybdenum di sulfide (nMoS) particles as a potential machining fluid for CNC-end milling.

View Article and Find Full Text PDF

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Comparison of Phacoemulsification and Aspiration Parameters in Cataract Surgery: Metal Tip vs. Hybrid Tip.

Bioengineering (Basel)

November 2024

Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan.

Various tips are available for phacoemulsification in cataract surgery. Evidence-based data can inform ophthalmologists, especially inexperienced ones, on tip selection. We retrospectively evaluated the energy efficiency and other parameters of two ultrasonic phacoemulsification and aspiration tips across different nuclear hardness grades in 342 cataract patients (342 eyes) with nuclear hardness grades II to IV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!