In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920765PMC
http://dx.doi.org/10.3390/s23031230DOI Listing

Publication Analysis

Top Keywords

feature selection
12
reinforcement learning
12
personal authentication
8
optimal features
8
ecg signals
8
authentication system
8
deep learning
8
learning structures
8
fewer features
8
authentication
5

Similar Publications

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection.

Sensors (Basel)

December 2024

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance.

View Article and Find Full Text PDF

Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.

View Article and Find Full Text PDF

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.

Sensors (Basel)

December 2024

Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated.

View Article and Find Full Text PDF

G-RCenterNet: Reinforced CenterNet for Robotic Arm Grasp Detection.

Sensors (Basel)

December 2024

School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.

In industrial applications, robotic arm grasp detection tasks frequently suffer from inadequate accuracy and success rates, which result in reduced operational efficiency. Although existing methods have achieved some success, limitations remain in terms of detection accuracy, real-time performance, and generalization ability. To address these challenges, this paper proposes an enhanced grasp detection model, G-RCenterNet, based on the CenterNet framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!