Convolutional Neural Networks (CNN) have received a large share of research in mammography image analysis due to their capability of extracting hierarchical features directly from raw data. Recently, Vision Transformers are emerging as viable alternative to CNNs in medical imaging, in some cases performing on par or better than their convolutional counterparts. In this work, we conduct an extensive experimental study to compare the most recent CNN and Vision Transformer architectures for whole mammograms classification. We selected, trained and tested 33 different models, 19 convolutional- and 14 transformer-based, on the largest publicly available mammography image database OMI-DB. We also performed an analysis of the performance at eight different image resolutions and considering all the individual lesion categories in isolation (masses, calcifications, focal asymmetries, architectural distortions). Our findings confirm the potential of visual transformers, which performed on par with traditional CNNs like ResNet, but at the same time show a superiority of modern convolutional networks like EfficientNet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921468PMC
http://dx.doi.org/10.3390/s23031229DOI Listing

Publication Analysis

Top Keywords

convolutional networks
8
experimental study
8
mammography image
8
convolutional
4
networks transformers
4
transformers mammography
4
mammography classification
4
classification experimental
4
study convolutional
4
convolutional neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!