Tool-Wear-Estimation System in Milling Using Multi-View CNN Based on Reflected Infrared Images.

Sensors (Basel)

Department of Smart Health Science and Technology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea.

Published: January 2023

A novel method for tool wear estimation in milling using infrared (IR) laser vision and a deep-learning algorithm is proposed and demonstrated. The measurement device employs an IR line laser to irradiate the tool focal point at angles of -7.5°, 0.0°, and +7.5° to the vertical plane, and three cameras are placed at 45° intervals around the tool to collect the reflected IR light at different locations. For the processing materials and methods, a dry processing method was applied to a 100 mm × 100 mm × 40 mm SDK-11 workpiece through end milling and downward cutting using a TH308 insert. This device uses the diffused light reflected off the surface of a rotating tool roughened by flank wear, and a polarization filter is considered. As the measured tool wear images exhibit a low dynamic range of exposure, high dynamic range (HDR) images are obtained using an exposure fusion method. Finally, tool wear is estimated from the images using a multi-view convolutional neural network. As shown in the results of the estimated tool wear, a mean absolute error (MAE) of prediction error calculated was to be 9.5~35.21 μm. The proposed method can improve machining efficiency by reducing the downtime for tool wear measurement and by increasing tool life utilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921934PMC
http://dx.doi.org/10.3390/s23031208DOI Listing

Publication Analysis

Top Keywords

tool wear
20
tool
9
dynamic range
8
wear
6
tool-wear-estimation system
4
system milling
4
milling multi-view
4
multi-view cnn
4
cnn based
4
based reflected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!