Traditionally, the biomechanical analysis of Olympic weightlifting movements required laboratory equipment such as force platforms and transducers, but such methods are difficult to implement in practice. This study developed a field-based method using wearable technology and videos for the biomechanical assessment of weightlifters. To demonstrate the practicality of our method, we collected kinetic and kinematic data on six Singapore National Olympic Weightlifters. The participants performed snatches at 80% to 90% of their competition one-repetition maximum, and the three best attempts were used for the analysis. They wore a pair of in-shoe force sensors loadsol (novel, Munich, Germany) to measure the vertical ground reaction forces under each foot. Concurrently, a video camera recorded the barbell movement from the side. The kinematics (e.g., trajectories and velocities) of the barbell were extracted using a free video analysis software (Kinovea). The power-time history was calculated from the force and velocity data. The results showed differences in power, force, and barbell velocity with to reliability. Technical inconsistency in the barbell trajectories were also identified. In conclusion, this study presented a simple and practical approach to evaluating weightlifters using in-shoe wearable sensors and videos. Such information can be useful for monitoring progress, identifying errors, and guiding training plans for weightlifters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919757 | PMC |
http://dx.doi.org/10.3390/s23031171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!