Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics.

Polymers (Basel)

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.

Published: February 2023

Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919048PMC
http://dx.doi.org/10.3390/polym15030763DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
28
soft robotics
20
disordered proteins
16
bio-inspired intrinsically
12
polymers soft
8
disordered smart
8
robotics applications
8
applications bio-inspired
8
intrinsically
7
disordered
7

Similar Publications

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.

Cell Rep Phys Sci

November 2024

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.

Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.

View Article and Find Full Text PDF

Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.

View Article and Find Full Text PDF

Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!