The traditional aqueous flame-retardant coating faces the problem of slow solvent evaporation rate in the preparation process. It is an urgent problem to ensure that the function of the membrane is not destroyed while accelerating the solvent volatilization. Herein, we fabricated films on the metal substrate surface by a totally novel method: demulsification-induced fast solidification to rapidly obtain the flame-retardant coating. The environmentally friendly flame retardants aluminum hydroxide and red phosphorus were mixed with the commercial water-based polyurethane 906 emulsion to explore the optimal mixing ratio, where the adhesion of the flame-retardant reached the Grade 3 standard, the sample remained intact after the 100 cm drop hammer test and the limiting oxygen index value reached 30.4%. In addition, compared with the traditional process, this method, with the advantages of rapidly drying, environmentally friendly, uniformly prepared coatings on the surface of any shape substrates, as well as accurate and controllable coating thickness, can be widely applied in the flame-retardant field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919632 | PMC |
http://dx.doi.org/10.3390/polym15030754 | DOI Listing |
Heliyon
January 2025
Jiangxi Guangyuan Chemical Co. Ltd., Ji'an, Jiangxi, 331500, China.
A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Electronic address:
The widespread use of flammable building materials severely threatens residential safety. Additionally, traditional fire-alarm systems may fail in complex fire environments due to power disruptions. It is crucial to enhance the flame retardancy of material while establishing effective fire detection and early warning systems.
View Article and Find Full Text PDFWater Res
December 2024
Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.
View Article and Find Full Text PDFDev Dyn
January 2025
Biology Department, Simmons University, Boston, Massachusetts, USA.
Background: Perfluoroalkyl substances (PFAS) are persistent environmental contaminants previously used for industrial purposes as a non-stick coating and flame retardant. The stability of these molecules prevents their breakdown, which results in ground water contamination across the globe. Perfluoroalkyl substances molecules are known to bioaccumulate in various organisms.
View Article and Find Full Text PDFFront Chem
December 2024
School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!