Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Temperature dependence of electrical conductivity/resistivity of CNT networks (dry or impregnated), which is characterised by a temperature coefficient of resistance (TCR), is experimentally observed to be negative, especially for the case of aligned CNT (A-CNT). The paper investigates the role of three phenomena defining the TCR, temperature dependence of the intrinsic conductivity of CNTs, of the tunnelling resistance of their contacts, and thermal expansion of the network, in the temperature range 300-400 K. A-CNT films, created by rolling down A-CNT forests of different length and described in Lee et al., Appl Phys Lett, 2015, 106: 053110, are investigated as an example. The modelling of the electrical conductivity is performed by the nodal analysis of resistance networks, coupled with the finite-element thermomechanical modelling of network thermal expansion. The calculated TCR for the film is about -0.002 1/K and is close to the experimentally observed values. Comparative analysis of the influence of the TCR defining phenomena is performed on the case of dry and impregnated films. The analysis shows that in both cases, for an A-CNT film at the studied temperature interval, the main factor affecting a network's TCR is the TCR of the CNTs themselves. The TCR of the tunnelling contacts plays the secondary role; influence of the film thermal expansion is marginal. The prevailing impact of the intrinsic conductivity TCR on the TCR of the film is explained by long inter-contact segments of CNTs in an A-CNT network, which define the homogenised film conductivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921551 | PMC |
http://dx.doi.org/10.3390/polym15030678 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!