Electrospun nanofibers are very popular in polymer nanocomposites because they have a high aspect ratio, a large surface area, and good mechanical properties, which gives them a broad range of uses. The application of nonwoven structures of electrospun nanofiber mats has historically been limited to enhancing the interlaminar responses of fiber-reinforced composites. However, the potential of oriented nanofibers to improve the characteristics of bulk matrices cannot be overstated. In this research, a multilayered laminate composite was created by introducing polyamide (PA6)-oriented nanofibers into an epoxy matrix in order to examine the effect of the nanofibers on the tensile and thermal characteristics of the nanocomposite. The specimens' fracture surfaces were examined using scanning electron microscopy (SEM). Using differential scanning calorimetry (DSC) analysis, the thermal characteristics of the nanofiber-layered composites were investigated. The results demonstrated a 10.58% peak in the nanocomposites' elastic modulus, which was compared to the numerical simulation and the analytical model. This work proposes a technique for the development of lightweight high-performance nanocomposites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919334PMC
http://dx.doi.org/10.3390/polym15030673DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
electrospun nanofibers
8
thermal characteristics
8
nanofibers
5
properties nanocomposites
4
nanocomposites reinforced
4
reinforced pa6
4
pa6 electrospun
4
nanofibers electrospun
4
nanofibers popular
4

Similar Publications

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Objectives: The aim of this systematic review was to assess the effect of DM (Type 1 and Type 2 Diabetes) and hyperglycaemia on the physical and mechanical properties of dentine which is critical for successful endodontic treatment.

Method: An electronic search of the following databases: PubMed, MEDLINE, Web of Science and the grey literature was performed up until July 2024. In vitro and in vivo studies on the effect of DM or hyperglycaemia on the mechanical and physical properties of dentine were included.

View Article and Find Full Text PDF

Raman Signature of Stripe Domains in Monolayer WMoS Alloys.

ACS Appl Mater Interfaces

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.

View Article and Find Full Text PDF

Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.

Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.

View Article and Find Full Text PDF

Microcapsule-Containing Self-Reporting Materials Based on Donor-acceptor Stenhouse Adducts.

ACS Macro Lett

January 2025

Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China.

The microcapsule-containing self-reporting system has attracted attention for its excellent characteristics in visualizing microdamage. In this study, we developed self-reporting materials based on the formation of donor-acceptor Stenhouse adducts (DASA) from microcapsules containing Meldrum's acid furfural conjugate (MAFC). Under mechanical force, MAFC is released from broken microcapsules and forms highly colored DASA with secondary amines in the matrix to indicate the small cracks or deformations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!