To obtain industrialized poly(ethylene terephthalate) (PET) composites with highly efficient flame retardancy, a phosphorus-nitrogen (P-N) containing hyperbranched flame retardant additive was synthesized by 9,10-dihydro-9-oxa-10-phospho-phenanthrene-butyric acid (DDP) and tris(2-hydroxyethyl) isocyanurate (THEIC) through high temperature esterification known as hyperbranched DDP-THEIC (hbDT). The chemical structure of the synthesized hbDT was determined by FTIR, H NMR, C NMR, and GPC, etc. Subsequently, hbDT/PET composites were prepared by co-blending, and the effects of hbDT on the thermal stability, flame retardancy, combustion performance, and thermal degradation behavior of PET were explored to deeply analyze its flame retardant mechanism. The test results showed that hbDT was successfully synthesized, and that hbDT maintained thermal stability well with the required processing conditions of PET as retardant additives. The flame retardant efficiency of PET was clearly improved by the addition of hbDT via the synergistic flame-retardant effect of P and N elements. When the mass fraction of flame retardant was 5%, the LOI of the hbDT/PET composite increased to 30.2%, and the vertical combustion grade reached UL-94 V-0. Compared with pure PET, great decreased total heat release (decreased by 16.3%) and peak heat release rate (decreased by 54.9%) were exhibited. Finally, the flame retardant mechanism of hbDT/PET was supposed, and it was confirmed that retardant effect happened in both the gas phase and condensed phase. This study is expected to provide a new idea for the development of low toxic, environment-friendly and highly efficient flame retardant additive for polyesters in an industry scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921204 | PMC |
http://dx.doi.org/10.3390/polym15030662 | DOI Listing |
Int J Biol Macromol
December 2024
USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA. Electronic address:
Improving flame retardancy and mechanical strength of lignin-containing polyurethane is a great challenge. In this study, lignin with favorable reactivity and dispersity was extracted from poplar using acid hydrotrope p-TsOH in EtOH. The extracted acid hydrotrope lignin (AHL) was subsequently functionalized with nitrogen and phosphorus (FHL) and reacted with isocyanate to fabricate a fire-retardant polyurethane (FHL-PU).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:
In this study, two phosphorus-based flame retardants diethylenetriamine trimethyl diphosphonate lysine (APTA) and a tetrakis(hydroxymethyl)phosphonium sulfate prepolymer with urea (DUPT) were synthesized. The structures of these compounds were characterized via nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). FTIR and scanning electron microscopy (SEM) analyses revealed that DUPT crosslinked APTA onto cellulose, which was pre-processed with diethylenetriamine dipropylene oxide (NAED) to introduce NH groups through PCN bonds.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Polylactic acid (PLA) is a bio-recyclable plastic, but its high flammability limits broader applications. Here, a novel flame retardant (Zn-CHP) is synthesized from chitosan (CH), diethylenetriaminepenta (methylenephosphonic) acid (DTPMP), and ZnCl₂ using a simple, solvent-free process. The Zn-CHP additive is melt-blended with PLA, achieving excellent flame retardancy at just 2 wt% loading.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia.
TCIPP (tris(1,3-dichloro-2-propyl) phosphate) and TCEP (tris(2-chloroethyl) phosphate) are organophosphate ester flame retardants found in various consumer products, posing significant health and environmental risks through inhalation, ingestion, and dermal exposure. Research reveals these compounds cause oxidative stress, inflammation, endocrine disruption, genotoxicity, neurotoxicity, and potentially hepatotoxicity, nephrotoxicity, cardiotoxicity, developmental, reproductive, and immunotoxicity. This review summarizes the current knowledge on the toxicological mechanisms of TCIPP and TCEP and presents the latest data on their toxicological effects obtained in vitro and in vivo, using omic systems, and on the basis of computational modelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!