CVD Deposited Epoxy Copolymers as Protective Coatings for Optical Surfaces.

Polymers (Basel)

Department of Chemical Engineering, İzmir Institute of Technology, 35430 Urla, Turkey.

Published: January 2023

Copolymer thin films of glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) and 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4D4) were synthesized via initiated chemical vapor deposition (iCVD) as protective coatings for optical surfaces. Chemical durability in various solvents, corrosion resistance, adhesion to substrate, thermal resistance and optical transmittance of the films were evaluated. Crosslinked thin films exhibited high chemical resistance to strong organic solvents and excellent adhesion to substrates. Poly(GMA-co-EGDMA) and poly(GMA-co-V4D4) copolymers demonstrated protection against water (<1% thickness loss), high salt resistance (<1.5% thickness loss), and high optical transparency (~90% in visible spectrum) making them ideal coating materials for optical surfaces. Combining increased mechanical properties of GMA and chemical durability V4D4, the iCVD process provides a fast and low-cost alternative for the fabrication of protective coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920665PMC
http://dx.doi.org/10.3390/polym15030652DOI Listing

Publication Analysis

Top Keywords

protective coatings
8
coatings optical
8
optical surfaces
8
thin films
8
cvd deposited
4
deposited epoxy
4
epoxy copolymers
4
copolymers protective
4
surfaces copolymer
4
copolymer thin
4

Similar Publications

Oral Microalgae-Based Biosystem to Enhance Irreversible Electroporation Immunotherapy in Hepatocellular Carcinoma.

Adv Sci (Weinh)

January 2025

Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.

Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases.

View Article and Find Full Text PDF

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks for Transparent and Fire-Proof Ceramizable Coatings.

Nanomicro Lett

January 2025

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.

In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!