Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation.

Polymers (Basel)

National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Published: January 2023

Low-molecular-weight carrageenan has attracted great interest because it shows advantages in solubility, absorption efficiency, and bioavailability compared to original carrageenan. However more environment-friendly and efficient methods to prepare low-molecular-weight carrageenan are still in great need. In the present study, a photocatalytic degradation method with only TiO has been developed and it could decrease the average molecular weight of κ-carrageenan to 4 kDa within 6 h. The comparison of the chemical compositions of the degradation products with those of carrageenan by FT-IR, NMR, etc., indicates no obvious removement of sulfate group, which is essential for bioactivities. Then 20 carrageenan oligosaccharides in the degradation products were identified by HPLC-MS, and 75% of them possessed AnGal or its decarbonylated derivative at their reducing end, indicating that photocatalysis is preferential to break the glycosidic bond of AnGal. Moreover, the analysis results rheology and Cryo-SEM demonstrated that the gel property decreased gradually. Therefore, the present study demonstrated that the photocatalytic method with TiO as the only catalyst has the potential to prepare low-molecular-weight carrageenan with high sulfation degree and low viscosity, and it also proposed the degradation rules after characterizing the degradation products. Thus, the present study provides an effective green method for the degradation of carrageenan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920076PMC
http://dx.doi.org/10.3390/polym15030602DOI Listing

Publication Analysis

Top Keywords

low-molecular-weight carrageenan
12
degradation products
12
photocatalytic degradation
8
prepare low-molecular-weight
8
method tio
8
degradation
7
carrageenan
7
characterization gel
4
gel properties
4
low-molecular-weight
4

Similar Publications

Myricetin (MYR) is a natural flavonoid that has several biological functions. However, some of its beneficial effects are diminished due to low water solubility, stability, and bioavailability. Herein, several kinds of silica nanoparticles (MCM-41 and SBA-15) were loaded with MYR to improve its biological activity as an analgesic, antipyretic, and anti-inflammatory component, thereby overcoming its drawbacks.

View Article and Find Full Text PDF

Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties.

View Article and Find Full Text PDF

κ-Carrageenan (KC) is a polysaccharide widely used in food industry. It has been widely studied for its excellent physicochemical and beneficial properties. However, the high molecular weight and high viscosity of KC make it difficult to be absorbed and to exert its' biological activities, thus limit its extensive industrial application.

View Article and Find Full Text PDF

Orally administrated fucoidan and its low-molecular-weight derivatives are absorbed differentially to alleviate coagulation and thrombosis.

Int J Biol Macromol

January 2024

School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China. Electronic address:

Thrombosis is a serious threat to human health and life. Fucoidan, a sulfated polysaccharide from brown algae, could prevent coagulation and thrombus after intravenous administration. However, more efforts are still needed to develop its oral agent.

View Article and Find Full Text PDF

Two series of new VV-hemorphin-5 analogs with structures Val-Val-Tyr-Xxx-Trp-Thr-Gln-NH and Adam-Val-Val-Tyr-Xxx-Trp-Thr-Gln-NH , where Xxx is Ac5c (1-aminocyclopentane-1-carboxylic acid), Ac6c (1-aminocyclohexane-1-carboxylic acid), Ac7c (1-aminocycloheptane-1-carboxylic acid), and Adam is the low-molecular-weight lipophilic adamantyl building block, were synthesized, characterized electrochemically and evaluated for antioxidant, anti-hyperalgesia, and anticonvulsant activity. The design of the compounds followed the strategy to improve the propensity for aqueous solubility and/or to increase their affinity for the target receptor or enzyme. The partition coefficient value shows that the peptide scaffold goes from hydrophilic to lipophilic with the increasing size of the cycloalkane ring and even more with the introduction of the adamantane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!