A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@ergo/gc+electrode&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Polydiphenylamine@Electrochemically Reduced Graphene Oxide Electrode for the D-Penicillamine Sensor from Human Blood Serum Samples Using Amperometry. | LitMetric

D-penicillamine (PA) is a sulfur group-containing drug prescribed for various health issues, but overdoses have adverse effects. Therefore, regular, selective, and sensitive sensing is essential to reduce the need for further treatment. In this study, diphenylamine (DPA) was electropolymerized in an aqueous acidic medium. The PA detection sensitivity, selectivity, and limit of detection were enhanced by electropolymerizing DPA on an electrochemically reduced graphene oxide (ERGO)/glassy carbon (GC) surface. The formation of p-DPA and ERGO was investigated using various techniques. The as-prepared p-DPA@ERGO/GC revealed the excellent redox-active (N-C to N=C) sites of p-DPA. The p-DPA@ERGO/GC electrode exhibited excellent electrochemical sensing ability towards PA determination because of the presence of the -NH-functional moiety and effective interactions with the -SH group of PA. The p-DPA@ERGO/GC exhibited a high surface coverage of 9.23 × 10 mol cm. The polymer-modified p-DPA@ERGO/GC electrode revealed the amperometric determination of PA concentration from the 1.4 to 541 μM wide range and the detection limit of 0.10 μM. The real-time feasibility of the developed p-DPA@ERGO/GC electrode was tested with a realistic PA finding in human blood serum samples and yielded a good recovery of 97.5-101.0%, confirming the potential suitability in bio-clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921737PMC
http://dx.doi.org/10.3390/polym15030577DOI Listing

Publication Analysis

Top Keywords

p-dpa@ergo/gc electrode
12
reduced graphene
8
graphene oxide
8
human blood
8
blood serum
8
serum samples
8
p-dpa@ergo/gc
5
development polydiphenylamine@electrochemically
4
polydiphenylamine@electrochemically reduced
4
electrode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!