3D-Printed Polycaprolactone Mechanical Characterization and Suitability Assessment for Producing Wrist-Hand Orthoses.

Polymers (Basel)

Department of Robotics and Production Systems, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania.

Published: January 2023

In this research, the mechanical properties of 3D-printed polycaprolactone (PCL), a biocompatible and biodegradable semi-crystalline polyester, available as feedstock for additive manufacturing technology based on the material extrusion process, were determined. The influence of the infill pattern (zig-zag vs. gyroid) and ultraviolet (UV-B) exposure over the specimens' mechanical performances were also investigated to gather relevant data on the process parameter settings for different applications. Specimens and samples of 3D-printed PCL were analyzed through tensile and flexural tests. The experimental data showed the good repeatability of the manufacturing process, as well as a mechanical behavior independent of the specimens' infill pattern at full density. No differences between the failure patterns of the tensile specimens were recorded. UV-B exposure proved to have a significant negative impact on the specimens' tensile strength. The 3D printing of PCL and PCL blends is reported mainly for use in scaffold manufacturing or drug delivery applications. As another novelty, the suitability of commercial PCL filaments for producing patient-customized wrist-hand orthoses was also assessed in this study. Semi-cylindrical PCL samples mimicking the forearm part of a wrist-hand orthosis with hexagonal open pockets were 3D-printed and mechanically tested. The results were discussed in comparison to samples with a similar design, made of polylactic acid. The experiments revealed the need to carefully calibrate the manufacturing parameters to generate defect-free, good quality prints. Once settings were established, promising results were obtained when producing orthoses in a ready-to-use form. On the other hand, the attempts to thermoform flat 3D-printed PCL orthoses proved unsuccessful.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919332PMC
http://dx.doi.org/10.3390/polym15030576DOI Listing

Publication Analysis

Top Keywords

3d-printed polycaprolactone
8
wrist-hand orthoses
8
infill pattern
8
uv-b exposure
8
3d-printed pcl
8
pcl
7
3d-printed
5
mechanical
4
polycaprolactone mechanical
4
mechanical characterization
4

Similar Publications

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

E-jet printed polycaprolactone with strontium-substituted mesoporous bioactive glass nanoparticles for bone tissue engineering.

Biomater Adv

January 2025

Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.

Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.

View Article and Find Full Text PDF

A self-forming bone membrane generated by periosteum-derived stem cell spheroids enhances the repair of bone defects.

Acta Biomater

December 2024

Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China. Electronic address:

The periosteum, a highly specialized thin tissue, is instrumental in contributing to as much as 70% of early bone formation. Recognizing the periosteum's vital physiological roles, the fabrication of a biomimetic periosteum has risen as an auspicious strategy for addressing extensive bone defects. In the study, we obtained such biomimetic periosteum by utilizing periosteum-derived stem cells (PDSCs) spheroids.

View Article and Find Full Text PDF

Chin augmentation can dramatically transform a patient's appearance. Various techniques are in use, each with their specific problems and limitations. We present the first case report from the Indian subcontinent using a custom 3D-printed, bioresorbable polycaprolactone implant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!