Surface cleaning of plastic materials of historical value can be challenging due to the high risk of inducing detrimental effects and visual alterations. As a result, recent studies have focused on researching new approaches that might reduce the associated hazards and, at the same time, minimize the environmental impact by employing biodegradable and green materials. In this context, the present work investigates the effects and potential suitability of dense carbon dioxide (CO) as an alternative and green solvent for cleaning plastic materials of historical value. The results of extensive trials with CO in different phases (supercritical, liquid, and vapor) and under various conditions (pressure, temperature, exposure, and depressurization time) are reported for new, transparent, thick poly(methyl methacrylate) (PMMA) samples. The impact of CO on the weight, the appearance of the samples (dimensions, color, gloss, and surface texture), and modifications to their physicochemical and mechanical properties were monitored via a multi-analytical approach that included optical microscopy, Raman and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, and micro-indentation (Vickers hardness). Results showed that CO induced undesirable and irreversible changes in PMMA samples (i.e., formation of fractures and stress-induced cracking, drastic decrease in the surface hardness of the samples), independent of the conditions used (i.e., temperature, pressure, CO phase, and exposure time).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919672 | PMC |
http://dx.doi.org/10.3390/polym15030566 | DOI Listing |
Sensors (Basel)
January 2025
Yunnan Earthquake Agency, Kunming 650224, China.
The strong motion records collected in full-scale structures provide the ultimate evidence of how real structures, in situ, respond to earthquakes. This paper presents a novel method for visualization, in three dimensions (3D), of the collective motion by a dense array of sensors in a building. The method is based on one- and two-dimensional biharmonic spline interpolation of the motion recorded by multiple sensors on the same or multiple floors.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Increasing the degree of freedom for quantum entanglement within tensor networks can enhance the depiction of the essence in many-body systems. However, this enhancement comes with a significant increase in computational complexity and critical slowing down, which drastically increases time consumption. This work converts a quantum tensor network algorithm into a classical circuit on the Field Programmable Gate Arrays (FPGAs) and arranges the computing unit with a dense parallel design, efficiently optimizing the time consumption.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
Two plasticizers with distinct properties are carefully studied in this research for their suitability in creating biocomposite edible film products. The study uncovers films' physical, tensile, and biodegradability attributes, using snakehead gelatin and ĸ-carrageenan in different concentrations, with sorbitol or glycerol as plasticizers. The biomaterials of the edible film consist of snakehead gelatin () 2% (/); ĸ-carrageenan at concentrations of 1%, 1.
View Article and Find Full Text PDFAdv Mater
January 2025
National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
The hardness of thermoplastic elastomers (TPEs) significantly influences their suitability for various applications, but traditionally, enhancing hardness reduces toughness. Herein a method is introduced that leverages hybrid soft segments to fine-tune the hardness of TPEs without compromising their exceptional toughness. Through the selective copolymerization of polytetramethylene ether glycols (PTMEGs) at various molecular weights, supramolecular poly(urethane-urea) TPEs are molecularly engineered to cover a wide spectrum of hardness while retaining good toughness.
View Article and Find Full Text PDFSoil moisture is a key parameter for the exchange of substance and energy at the land-air interface, timely and accurate acquisition of soil moisture is of great significance for drought monitoring, water resource management, and crop yield estimation. Synthetic aperture radar (SAR) is sensitive to soil moisture, but the effects of vegetation on SAR signals poses challenges for soil moisture retrieval in areas covered with vegetation. In this study, based on Sentinel-1 SAR and Sentinel-2 optical remote sensing data, a coupling approach was employed to retrieval surface soil moisture over dense vegetated areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!