Strengthening Polylactic Acid by Salification: Surface Characterization Study.

Polymers (Basel)

Department of Mechanical Engineering, Widener University, Chester, PA 19013, USA.

Published: January 2023

Polylactic acid (PLA) is one of the market's most commonly used biodegradable polymers, with diverse applications in additive manufacturing, specifically fused deposition modeling (FDM) 3D printing. The use of PLA in complex and sophisticated FDM applications is continually growing. However, the increased range of applications requires a better understanding of the material properties of this polymer. For example, recent studies have shown that PLA has the potential to be used in artificial heart valves. Still, the durability and longevity of this material in such a harsh environment are unknown, as heart valve failures have been attributed to salification. Additionally, there is a gap in the field for in situ material characterization of PLA surfaces during stiffening. The present study aims to benchmark different dynamic atomic force microscopy (AFM) techniques available to study the salification phenomenon of PLA at micro-scales using different PLA thin films with various salt concentrations (i.e., 10%, 15%, and 20% of sodium chloride (NaCl)). The measurements are conducted by tapping mode AFM, bimodal AFM, the force spectroscopy technique, and energy quantity analysis. These measurements showed a stiffening phenomenon occurring as the salt solution is increased, but the change was not equally sensitive to material property differences. Tapping mode AFM provided accurate topographical information, while the associated phase images were not considered reliable. On the other hand, bimodal AFM was shown to be capable of providing the topographical information and material compositional mapping through the higher eigenmode's phase channel. The dissipated power energy quantities indicated that how the polymers become less dissipative as salt concentration increases can be measured. Lastly, it was shown that force spectroscopy is the most sensitive technique in detecting the differences in properties. The comparison of these techniques can provide a helpful guideline for studying the material properties of PLA polymers at micro- and nano-scales that can prove beneficial in various fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921088PMC
http://dx.doi.org/10.3390/polym15030492DOI Listing

Publication Analysis

Top Keywords

polylactic acid
8
material properties
8
tapping mode
8
mode afm
8
bimodal afm
8
force spectroscopy
8
pla
7
material
6
afm
5
strengthening polylactic
4

Similar Publications

Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).

View Article and Find Full Text PDF

Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs).

View Article and Find Full Text PDF

High-throughput screening strategies for plastic-depolymerizing enzymes.

Trends Biotechnol

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China. Electronic address:

A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA).

View Article and Find Full Text PDF

Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes.

J Hazard Mater

January 2025

Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants.

View Article and Find Full Text PDF

The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!