Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919780 | PMC |
http://dx.doi.org/10.3390/plants12030629 | DOI Listing |
FEMS Microbiol Rev
December 2024
Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany.
Helotiales, a diverse fungal order within Leotiomycetes (Ascomycota), comprises over 6000 species occupying varied ecological niches, from plant pathogens to saprobes and symbionts. Despite their importance, their genetic adaptations to temperature and environmental conditions are understudied. This study investigates temperature adaptations in infection genes and substrate degradation genes through a comparative genomics analysis of 129 Helotiales species, using the newly sequenced genomes of and .
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
Understanding the impacts of freeze-thaw action on soil microbial nutrient limitation can provide important support for sustainable utilization of black soil resources. We analyzed the impacts of freeze-thaw action on soil microbial nutrient limitation on a slope farmland located in a typical thick Mollisol region of Keshan County, Heilongjiang Province. We examined the responses of soil microbial nutrient limitation to soil erosion rates through measuring soil nutrient, soil microbial biomass, and soil enzyme activities before and after freeze-thaw under natural conditions, and estimated the soil erosion rates by Cs tracing technology.
View Article and Find Full Text PDFEcol Evol
December 2024
Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences Xinjiang Agricultural University Urumqi China.
Animal gut microbiota play important roles in host immunity, nutrient metabolism, and energy acquisition. The gut microbiota and its metabolic products interact with the host in many different ways, influencing gut homoeostasis and health. is an endemic species which displays special frugivorous behavior, and it has been observed consuming grapes.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
Institute of Advanced Biomedical Engineering and Sciences, TWIns, Tokyo Women's Medical University, Tokyo, Japan.
To establish a sustainable cultured meat technology, a low-cost culture medium must be developed without expensive biological materials such as serum and coating substances. However, even adhering bovine myogenic cells to uncoated culture dishes in the serum-free medium is challenging. We found that serum-free culture medium conditioned by HepG2 and NIH/3T3 cells not only accomplished the cell adhesion on uncoated culture dishes (the serum-containing medium : the serum-free medium : the conditioned medium = 6722 ± 1500 : 2210 ± 319 : 5985 ± 1558 cells/cm), but also induced proliferation comparable to that observed in a serum-containing medium (the serum-containing medium : the serum-free medium : the conditioned medium = 10,050 ± 2814 : 2200 ± 707 : 8998 ± 3890 cells/cm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!