Phytohormones are regulators of plant growth and development, which under different types of stress can play a fundamental role in a plant's adaptation and survival. Some of these phytohormones such as cytokinin, gibberellin, salicylic acid, auxin, and ethylene are also produced by plant growth-promoting bacteria (PGPB). In addition, numerous volatile organic compounds are released by PGPB and, like bacterial phytohormones, modulate plant physiology and genetics. In the present work we review the basic functions of these bacterial phytohormones during their interaction with different plant species. Moreover, we discuss the most recent advances of the beneficial effects on plant growth of the phytohormones produced by PGPB. Finally, we review some aspects of the cross-link between phytohormone production and other plant growth promotion (PGP) mechanisms. This work highlights the most recent advances in the essential functions performed by bacterial phytohormones and their potential application in agricultural production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921776 | PMC |
http://dx.doi.org/10.3390/plants12030606 | DOI Listing |
Microb Cell Fact
January 2025
Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.
Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.
BMC Genomics
January 2025
Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.
Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Production and Genetic (Biotechnology), Faculty of Agriculture, Jahrom University, Jahrom, Iran.
Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!