Salinization of cultivated soils is a global phenomenon mainly caused by agricultural practices and deteriorates plant production. Biostimulants are products which can be applied exogenously to enhance the plants' defense mechanism and improve their developmental characteristics, also under abiotic stresses. We studied the potential of two biostimulants, (Asc) seaweed and a silicon-based (Si), to alleviate the saline conditions endured by watermelon transplants. Three salinity (0 mM, 50 mM, and 100 mM NaCl) treatments were applied in watermelon seedlings transplanted in pots, while the two biostimulants were sprayed in the foliar in the beginning of the experiment. Relative water content was improved by Asc in the high salinity level. The plant area, leaf number, and shoot dry weight deteriorated in relation to the salinity level. However, the root system (total root length and surface area) was enhanced by 50 mM salt, as well as Asc in some cases. The OJIP transient of the photosynthetic apparatus was also evaluated. Some OJIP parameters diminished in the high salinity level after Asc application. It is concluded that after salt stress Asc provoked a positive phenotypic response, while Si did not alleviate the salinity stress of transplanted watermelon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920198PMC
http://dx.doi.org/10.3390/plants12030433DOI Listing

Publication Analysis

Top Keywords

salinity level
12
watermelon transplants
8
high salinity
8
salinity
6
asc
5
silicon-based biostimulants
4
biostimulants differentially
4
differentially affect
4
affect physiology
4
physiology growth
4

Similar Publications

Distribution and Fasciola infection rates of Lymnaea snails and cattle in high-salinity areas of Mekong Delta, Vietnam.

J Vet Med Sci

January 2025

Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.

Fasciola-induced fascioliasis is a zoonotic disease with significant health and economic impacts on humans and livestock. Freshwater Lymnaea snails serve as intermediate hosts, contributing to the increasing prevalence of fascioliasis in cattle in coastal areas. The salinity tolerance of Lymnaea snails was investigated along with their distribution and Fasciola infection rates in both snails and grazing cattle in Ben Tre, Tra Vinh, and Soc Trang provinces in Mekong Delta, Vietnam, where seawater reversely enters into the paddy field during the dry season.

View Article and Find Full Text PDF

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.

View Article and Find Full Text PDF

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!